non_type_theorems : string -> (string * thm) list
STRUCTURE
SYNOPSIS
A versions of theorems that attempts to filter out theorems created by Hol_datatype.
DESCRIPTION
An invocation non_type_theorems thy, where thy is the name of a currently loaded theory segment, will return a list of the theorems stored in that theory. Axioms and definitions are excluded. Each theorem is paired with its name in the result.
FAILURE
Never fails. If thy is not the name of a currently loaded theory segment, the empty list is returned.
EXAMPLE
- new_theory "example";
<<HOL message: Created theory "example">>
> val it = () : unit
- val _ = Hol_datatype `example = First | Second`;
<<HOL message: Defined type: "example">>
- val example_def = Define
    `(example First = Second) /\ (example Second = First)`;
Definition has been stored under "example_def".
> val example_def = |- (example First = Second) /\ (example Second = First) :
  thm
- save_thm("example_thm",
   METIS_PROVE [example_def, theorem "example_nchotomy"]
     ``!x. example (example x) = x``);
metis: r[+0+5]+0+0+0+0+6+2+2+1+0+1+1#
> val it = |- !x. example (example x) = x : thm

- theorems "example";
> val it =
    [("num2example_example2num", |- !a. num2example (example2num a) = a),
     ("example2num_num2example",
      |- !r. r < 2 = (example2num (num2example r) = r)),
     ("num2example_11",
      |- !r r'.
           r < 2 ==> r' < 2 ==> ((num2example r = num2example r') = (r = r'))),
     ("example2num_11", |- !a a'. (example2num a = example2num a') = (a = a')),
     ("num2example_ONTO", |- !a. ?r. (a = num2example r) /\ r < 2),
     ("example2num_ONTO", |- !r. r < 2 = ?a. r = example2num a),
     ("num2example_thm",
      |- (num2example 0 = First) /\ (num2example 1 = Second)),
     ("example2num_thm",
      |- (example2num First = 0) /\ (example2num Second = 1)),
     ("example_EQ_example",
      |- !a a'. (a = a') = (example2num a = example2num a')),
     ("example_case_def",
      |- (!v0 v1. (case First of First -> v0 || Second -> v1) = v0) /\
         !v0 v1. (case Second of First -> v0 || Second -> v1) = v1),
     ("datatype_example", |- DATATYPE (example First Second)),
     ("example_distinct", |- ~(First = Second)),
     ("example_case_cong",
      |- !M M' v0 v1.
           (M = M') /\ ((M' = First) ==> (v0 = v0')) /\
           ((M' = Second) ==> (v1 = v1')) ==>
           ((case M of First -> v0 || Second -> v1) =
            case M' of First -> v0' || Second -> v1')),
     ("example_nchotomy", |- !a. (a = First) \/ (a = Second)),
     ("example_Axiom", |- !x0 x1. ?f. (f First = x0) /\ (f Second = x1)),
     ("example_induction", |- !P. P First /\ P Second ==> !a. P a),
     ("example_thm", |- !x. example (example x) = x)] : (string * thm) list

- EmitTeX.non_type_theorems "example";
> val it = [("example_thm", |- !x. example (example x) = x)] :
  (string * thm) list
SEEALSO
HOL  Kananaskis-13