structure TypeBase
SYNOPSIS
A database of facts stemming from datatype declarations.
DESCRIPTION
The structure TypeBase provides an interface to a database that is updated when a new datatype is introduced with Hol_datatype. When a new datatype is declared, a collection of theorems "about" the type can be automatically derived. These are indeed proved, and are stored in the current theory segment. They are also automatically stored in TypeBase.

The interface to TypeBase is intended to provide support for writers of high-level tools for reasoning about datatypes.

EXAMPLE
   > Datatype `tree = Leaf | Node 'a tree tree`;
   <<HOL message: Defined type: "tree">>
   val it = () : unit

   > TypeBase.read {Thy = current_theory(), Tyop = "tree"};
   val it =
      SOME
       -----------------------
       -----------------------
       HOL datatype: "scratch$tree"
       Primitive recursion:
        |- !f0 f1.
               ?fn.
                   (fn Leaf = f0) /\
                   !a0 a1 a2. fn (Node a0 a1 a2) = f1 a0 a1 a2 (fn a1) (fn a2)
       Case analysis:
        |- (!v f. tree_CASE Leaf v f = v) /\
           !a0 a1 a2 v f. tree_CASE (Node a0 a1 a2) v f = f a0 a1 a2
       Size:
        |- (!f. tree_size f Leaf = 0) /\
           !f a0 a1 a2.
               tree_size f (Node a0 a1 a2) =
               1 + (f a0 + (tree_size f a1 + tree_size f a2))
       Induction:
        |- !P.
               P Leaf /\ (!t t0. P t /\ P t0 ==> !a. P (Node a t t0)) ==>
               !t. P t
       Case completeness: |- !tt. (tt = Leaf) \/ ?a t t0. tt = Node a t t0
       Case-const equality split:
        |- (tree_CASE x v f = v') <=>
           (x = Leaf) /\ (v = v') \/
           ?a t t0. (x = Node a t t0) /\ (f a t t0 = v')
       Extras: [ ]
       One-to-one:
        |- !a0 a1 a2 a0' a1' a2'.
               (Node a0 a1 a2 = Node a0' a1' a2') <=>
               (a0 = a0') /\ (a1 = a1') /\ (a2 = a2')
       Distinctness: |- !a2 a1 a0. Leaf <> Node a0 a1 a2: tyinfo option
SEEALSO
HOL  Kananaskis-13