arith_ss : simpset
STRUCTURE
SYNOPSIS
Simplification set for arithmetic.
DESCRIPTION
The simplification set arith_ss is a version of std_ss enhanced for arithmetic. It includes many arithmetic rewrites, an evaluation mechanism for ground arithmetic terms, and a decision procedure for linear arithmetic. It also incorporates a cache of successfully solved conditions proved when conditional rewrite rules are successfully applied.

The following rewrites are currently used to augment those already present from std_ss:

   |- !m n. (m * n = 0) = (m = 0) \/ (n = 0)
   |- !m n. (0 = m * n) = (m = 0) \/ (n = 0)
   |- !m n. (m + n = 0) = (m = 0) /\ (n = 0)
   |- !m n. (0 = m + n) = (m = 0) /\ (n = 0)
   |- !x y. (x * y = 1) = (x = 1) /\ (y = 1)
   |- !x y. (1 = x * y) = (x = 1) /\ (y = 1)
   |- !m. m * 0 = 0
   |- !m. 0 * m = 0
   |- !x y. (x * y = SUC 0) = (x = SUC 0) /\ (y = SUC 0)
   |- !x y. (SUC 0 = x * y) = (x = SUC 0) /\ (y = SUC 0)
   |- !m. m * 1 = m
   |- !m. 1 * m = m
   |- !x.((SUC x = 1) = (x = 0)) /\ ((1 = SUC x) = (x = 0))
   |- !x.((SUC x = 2) = (x = 1)) /\ ((2 = SUC x) = (x = 1))
   |- !m n. (m + n = m) = (n = 0)
   |- !m n. (n + m = m) = (n = 0)
   |- !c. c - c = 0
   |- !m. SUC m - 1 = m
   |- !m. (0 - m = 0) /\ (m - 0 = m)
   |- !a c. a + c - c = a
   |- !m n. (m - n = 0) = m <= n
   |- !m n. (0 = m - n) = m <= n
   |- !n m. n - m <= n
   |- !n m. SUC n - SUC m = n - m
   |- !m n p. m - n > p = m > n + p
   |- !m n p. m - n < p = m < n + p /\ 0 < p
   |- !m n p. m - n >= p = m >= n + p \/ 0 >= p
   |- !m n p. m - n <= p = m <= n + p
   |- !n. n <= 0 = (n = 0)
   |- !m n p. m + p < n + p = m < n
   |- !m n p. p + m < p + n = m < n
   |- !m n p. m + n <= m + p = n <= p
   |- !m n p. n + m <= p + m = n <= p
   |- !m n p. (m + p = n + p) = (m = n)
   |- !m n p. (p + m = p + n) = (m = n)
   |- !x y w. x + y < w + x = y < w
   |- !x y w. y + x < x + w = y < w
   |- !m n. (SUC m = SUC n) = (m = n)
   |- !m n. SUC m < SUC n = m < n
   |- !n m. SUC n <= SUC m = n <= m
   |- !m i n. SUC n * m < SUC n * i = m < i
   |- !p m n. (n * SUC p = m * SUC p) = (n = m)
   |- !m i n. (SUC n * m = SUC n * i) = (m = i)
   |- !n m. ~(SUC n <= m) = m <= n
   |- !p q n m. (n * SUC q ** p = m * SUC q ** p) = (n = m)
   |- !m n. ~(SUC n ** m = 0)
   |- !n m. ~(SUC (n + n) = m + m)
   |- !m n. ~(SUC (m + n) <= m)
   |- !n. ~(SUC n <= 0)
   |- !n. ~(n < 0)
   |- !n. (MIN n 0 = 0) /\ (MIN 0 n = 0)
   |- !n. (MAX n 0 = n) /\ (MAX 0 n = n)
   |- !n. MIN n n = n
   |- !n. MAX n n = n
   |- !n m. MIN m n <= m /\ MIN m n <= n
   |- !n m. m <= MAX m n /\ n <= MAX m n
   |- !n m. (MIN m n < m = ~(m = n) /\ (MIN m n = n)) /\
            (MIN m n < n = ~(m = n) /\ (MIN m n = m)) /\
            (m < MIN m n = F) /\ (n < MIN m n = F)
   |- !n m. (m < MAX m n = ~(m = n) /\ (MAX m n = n)) /\
            (n < MAX m n = ~(m = n) /\ (MAX m n = m)) /\
            (MAX m n < m = F) /\ (MAX m n < n = F)
   |- !m n. (MIN m n = MAX m n) = (m = n)
   |- !m n. MIN m n < MAX m n = ~(m = n)

The decision procedure proves valid purely univeral formulas constructed using variables and the operators SUC,PRE,+,-,<,>,<=,>=. Multiplication by constants is accomodated by translation to repeated addition. An attempt is made to generalize sub-formulas of type num not fitting into this syntax.

COMMENTS
The philosophy behind this simpset is fairly conservative. For example, some potential rewrite rules, e.g., the recursive clauses for addition and multiplication, are not included, since it was felt that their incorporation too often resulted in formulas becoming more complex rather than simpler. Also, transitivity theorems are avoided because they tend to make simplification diverge.
SEEALSO
HOL  Kananaskis-13