Structure CoderTheory


Source File Identifier index Theory binding index

signature CoderTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val blist_coder_def : thm
    val bnum_coder_def : thm
    val bool_coder_def : thm
    val decode_def : thm
    val decoder_def : thm
    val domain_def : thm
    val encoder_def : thm
    val list_coder_def : thm
    val num_coder_def : thm
    val option_coder_def : thm
    val prod_coder_def : thm
    val sum_coder_def : thm
    val tree_coder_def : thm
    val unit_coder_def : thm
    val wf_coder_def : thm
  
  (*  Theorems  *)
    val decode_encode : thm
    val wf_coder : thm
    val wf_coder_blist : thm
    val wf_coder_bnum : thm
    val wf_coder_bool : thm
    val wf_coder_closed : thm
    val wf_coder_list : thm
    val wf_coder_num : thm
    val wf_coder_op : thm
    val wf_coder_option : thm
    val wf_coder_prod : thm
    val wf_coder_sum : thm
    val wf_coder_tree : thm
    val wf_coder_unit : thm
  
  val Coder_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [Decode] Parent theory of "Coder"
   
   [blist_coder_def]  Definition
      
      ⊢ ∀m p e d.
            blist_coder m (p,e,d) =
            (lift_blist m p,encode_blist m e,
             decode_blist (lift_blist m p) m d)
   
   [bnum_coder_def]  Definition
      
      ⊢ ∀m p. bnum_coder m p = (p,encode_bnum m,decode_bnum m p)
   
   [bool_coder_def]  Definition
      
      ⊢ ∀p. bool_coder p = (p,encode_bool,decode_bool p)
   
   [decode_def]  Definition
      
      ⊢ ∀p d l.
            decode p d l = case d l of NONE => @x. p x | SOME (x,v2) => x
   
   [decoder_def]  Definition
      
      ⊢ ∀p e d. decoder (p,e,d) = decode p d
   
   [domain_def]  Definition
      
      ⊢ ∀p e d. domain (p,e,d) = p
   
   [encoder_def]  Definition
      
      ⊢ ∀p e d. encoder (p,e,d) = e
   
   [list_coder_def]  Definition
      
      ⊢ ∀p e d.
            list_coder (p,e,d) =
            (EVERY p,encode_list e,decode_list (EVERY p) d)
   
   [num_coder_def]  Definition
      
      ⊢ ∀p. num_coder p = (p,encode_num,decode_num p)
   
   [option_coder_def]  Definition
      
      ⊢ ∀p e d.
            option_coder (p,e,d) =
            (lift_option p,encode_option e,decode_option (lift_option p) d)
   
   [prod_coder_def]  Definition
      
      ⊢ ∀p1 e1 d1 p2 e2 d2.
            prod_coder (p1,e1,d1) (p2,e2,d2) =
            (lift_prod p1 p2,encode_prod e1 e2,
             decode_prod (lift_prod p1 p2) d1 d2)
   
   [sum_coder_def]  Definition
      
      ⊢ ∀p1 e1 d1 p2 e2 d2.
            sum_coder (p1,e1,d1) (p2,e2,d2) =
            (lift_sum p1 p2,encode_sum e1 e2,
             decode_sum (lift_sum p1 p2) d1 d2)
   
   [tree_coder_def]  Definition
      
      ⊢ ∀p e d.
            tree_coder (p,e,d) =
            (lift_tree p,encode_tree e,decode_tree (lift_tree p) d)
   
   [unit_coder_def]  Definition
      
      ⊢ ∀p. unit_coder p = (p,encode_unit,decode_unit p)
   
   [wf_coder_def]  Definition
      
      ⊢ ∀p e d.
            wf_coder (p,e,d) ⇔ wf_pred p ∧ wf_encoder p e ∧ d = enc2dec p e
   
   [decode_encode]  Theorem
      
      ⊢ ∀p e x. wf_encoder p e ∧ p x ⇒ decode p (enc2dec p e) (e x) = x
   
   [wf_coder]  Theorem
      
      ⊢ ∀c. wf_coder c ⇒ ∀x. domain c x ⇒ decoder c (encoder c x) = x
   
   [wf_coder_blist]  Theorem
      
      ⊢ ∀m c. wf_coder c ⇒ wf_coder (blist_coder m c)
   
   [wf_coder_bnum]  Theorem
      
      ⊢ ∀m p. wf_pred_bnum m p ⇒ wf_coder (bnum_coder m p)
   
   [wf_coder_bool]  Theorem
      
      ⊢ ∀p. wf_pred p ⇒ wf_coder (bool_coder p)
   
   [wf_coder_closed]  Theorem
      
      ⊢ ∀c. wf_coder c ⇒ ∀l. domain c (decoder c l)
   
   [wf_coder_list]  Theorem
      
      ⊢ ∀c. wf_coder c ⇒ wf_coder (list_coder c)
   
   [wf_coder_num]  Theorem
      
      ⊢ ∀p. wf_pred p ⇒ wf_coder (num_coder p)
   
   [wf_coder_op]  Theorem
      
      ⊢ ∀p e f.
            (∃x. p x) ∧ wf_encoder p e ∧ (∀x. p x ⇒ e x = f x) ⇒
            wf_coder (p,e,enc2dec p f)
   
   [wf_coder_option]  Theorem
      
      ⊢ ∀c. wf_coder c ⇒ wf_coder (option_coder c)
   
   [wf_coder_prod]  Theorem
      
      ⊢ ∀c1 c2. wf_coder c1 ∧ wf_coder c2 ⇒ wf_coder (prod_coder c1 c2)
   
   [wf_coder_sum]  Theorem
      
      ⊢ ∀c1 c2. wf_coder c1 ∧ wf_coder c2 ⇒ wf_coder (sum_coder c1 c2)
   
   [wf_coder_tree]  Theorem
      
      ⊢ ∀c. wf_coder c ⇒ wf_coder (tree_coder c)
   
   [wf_coder_unit]  Theorem
      
      ⊢ ∀p. wf_pred p ⇒ wf_coder (unit_coder p)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-13