Structure Intmap
(* Intmap -- Applicative maps with integer keys *)
(* From SML/NJ lib 0.2, copyright 1993 by AT&T Bell Laboratories *)
(* Original implementation due to Stephen Adams, Southampton, UK *)
signature Intmap =
sig
type 'a intmap
exception NotFound
val empty : unit -> 'a intmap
val insert : 'a intmap * int * 'a -> 'a intmap
val retrieve : 'a intmap * int -> 'a
val peek : 'a intmap * int -> 'a option
val remove : 'a intmap * int -> 'a intmap * 'a
val numItems : 'a intmap -> int
val listItems : 'a intmap -> (int * 'a) list
val app : (int * 'a -> unit) -> 'a intmap -> unit
val revapp : (int * 'a -> unit) -> 'a intmap -> unit
val foldr : (int * 'a * 'b -> 'b) -> 'b -> 'a intmap -> 'b
val foldl : (int * 'a * 'b -> 'b) -> 'b -> 'a intmap -> 'b
val map : (int * 'a -> 'b) -> 'a intmap -> 'b intmap
val transform : ('a -> 'b) -> 'a intmap -> 'b intmap
end
(*
['a intmap] is the type of applicative maps from int to 'a.
[empty] creates a new empty map.
[insert(m, i, v)] extends (or modifies) map m to map i to v.
[retrieve(m, i)] returns v if m maps i to v; otherwise raises
NotFound.
[peek(m, i)] returns SOME v if m maps i to v; otherwise NONE.
[remove(m, i)] removes i from the domain of m and returns the
modified map and the element v corresponding to i. Raises NotFound
if i is not in the domain of m.
[numItems m] returns the number of entries in m (that is, the size
of the domain of m).
[listItems m] returns a list of the entries (i, v) of integers i and
the corresponding values v in m, in increasing order of i.
[app f m] applies function f to the entries (i, v) in m, in
increasing order of i.
[revapp f m] applies function f to the entries (i, v) in m, in
decreasing order of i.
[foldl f e m] applies the folding function f to the entries (i, v)
in m, in increasing order of i.
[foldr f e m] applies the folding function f to the entries (i, v)
in m, in decreasing order of i.
[map f m] returns a new map whose entries have form (i, f(i,v)),
where (i, v) is an entry in m.
[transform f m] returns a new map whose entries have form (i, f(i,v)),
where (i, v) is an entry in m.
*)
HOL 4, Kananaskis-13