Structure Tactic
signature Tactic =
sig
include Abbrev
val ACCEPT_TAC : thm_tactic
val DISCARD_TAC : thm_tactic
val CONTR_TAC : thm_tactic
val CCONTR_TAC : tactic
val ASSUME_TAC : thm_tactic
val assume_tac : thm_tactic
val FREEZE_THEN : thm_tactical
val CONJ_TAC : tactic
val conj_tac : tactic
val CONJ_ASM1_TAC : tactic
val conj_asm1_tac : tactic
val CONJ_ASM2_TAC : tactic
val conj_asm2_tac : tactic
val DISJ1_TAC : tactic
val disj1_tac : tactic
val DISJ2_TAC : tactic
val disj2_tac : tactic
val MP_TAC : thm_tactic
val mp_tac : thm_tactic
val EQ_TAC : tactic
val eq_tac : tactic
val X_GEN_TAC : term -> tactic
val GEN_TAC : tactic
val gen_tac : tactic
val SPEC_TAC : term * term -> tactic
val ID_SPEC_TAC : term -> tactic
val EXISTS_TAC : term -> tactic
val exists_tac : term -> tactic
val ID_EX_TAC : tactic
val GSUBST_TAC : ((term,term) Lib.subst -> term -> term)
-> thm list -> tactic
val SUBST_TAC : thm list -> tactic
val SUBST_OCCS_TAC : (int list * thm) list -> tactic
val SUBST1_TAC : thm -> tactic
val RULE_ASSUM_TAC : (thm -> thm) -> tactic
val rule_assum_tac : (thm -> thm) -> tactic
val RULE_L_ASSUM_TAC : (thm -> thm list) -> tactic
val SUBST_ALL_TAC : thm -> tactic
val CHECK_ASSUME_TAC : thm_tactic
val STRIP_ASSUME_TAC : thm_tactic
val strip_assume_tac : thm_tactic
val STRUCT_CASES_TAC : thm_tactic
val FULL_STRUCT_CASES_TAC : thm_tactic
val GEN_COND_CASES_TAC : (term -> bool) -> tactic
val COND_CASES_TAC : tactic
val IF_CASES_TAC : tactic
val BOOL_CASES_TAC : term -> tactic
val STRIP_GOAL_THEN : thm_tactic -> tactic
val FILTER_GEN_TAC : term -> tactic
val FILTER_DISCH_THEN : thm_tactic -> term -> tactic
val FILTER_STRIP_THEN : thm_tactic -> term -> tactic
val DISCH_TAC : tactic
val disch_tac : tactic
val DISJ_CASES_TAC : thm_tactic
val CHOOSE_TAC : thm_tactic
val X_CHOOSE_TAC : term -> thm_tactic
val STRIP_TAC : tactic
val strip_tac : tactic
val FILTER_DISCH_TAC : term -> tactic
val FILTER_STRIP_TAC : term -> tactic
val ASM_CASES_TAC : term -> tactic
val REFL_TAC : tactic
val UNDISCH_TAC : term -> tactic
val AP_TERM_TAC : tactic
val AP_THM_TAC : tactic
val MK_COMB_TAC : tactic
val BINOP_TAC : tactic
val ABS_TAC : tactic
val NTAC : int -> tactic -> tactic
val ntac : int -> tactic -> tactic
val WEAKEN_TAC : (term -> bool) -> tactic
val MATCH_ACCEPT_TAC : thm -> tactic
val MATCH_MP_TAC : thm -> tactic
val match_mp_tac : thm -> tactic
val prim_irule : thm -> tactic
val irule : thm -> tactic
val IRULE_TAC : thm -> tactic
val impl_tac : tactic
val impl_keep_tac : tactic
val HO_MATCH_ACCEPT_TAC : thm -> tactic
val HO_BACKCHAIN_TAC : thm -> tactic
val HO_MATCH_MP_TAC : thm -> tactic
val ho_match_mp_tac : thm -> tactic
val IMP_RES_TAC : thm -> tactic
val imp_res_tac : thm -> tactic
val RES_TAC : tactic
val res_tac : tactic
val provehyp : thm_tactic
val via : term * tactic -> tactic
val CONV_TAC : conv -> tactic
val BETA_TAC : tactic
val KNOW_TAC : term -> tactic
val SUFF_TAC : term -> tactic
val suff_tac : term -> tactic
val DEEP_INTROk_TAC : thm -> tactic -> tactic
val DEEP_INTRO_TAC : thm -> tactic
val SELECT_ELIM_TAC : tactic
val HINT_EXISTS_TAC : tactic
val part_match_exists_tac : (term -> term) -> term -> tactic
val drule : thm_tactic
val dxrule : thm_tactic
val drule_then : thm_tactic -> thm_tactic
val dxrule_then : thm_tactic -> thm_tactic
val drule_all : thm_tactic
val dxrule_all : thm_tactic
val drule_all_then : thm_tactic -> thm_tactic
val dxrule_all_then : thm_tactic -> thm_tactic
end
HOL 4, Kananaskis-13