Structure Unwind
(*-------------------------------------------------------------------
* UNWIND_EXISTS_CONV : conv
* UNWIND_FORALL_CONV : conv
*
* DESCRIPTION
*
* UNWIND_EXISTS_CONV eliminates existential
* quantifiers where the quantified variable
* is restricted to a single point via an equality in the
* conjuncts of the body. Given a term of the form
* ?x1 x2 ... xn. P1[x1..xn] /\ P2[x1..xn] /\ ... /\ Pm[x1..xn]
* where one of Pk is
* "x1 = F[x2...xn]"
* or "F[x2...xn] = x1"
* or "x1"
* or "~x1"
* UNWIND_EXISTS_CONV eliminates the variable x1 from the existential
* quantification and converts the term to
* ?x2...xn. P1'[x2...xn] /\ ...P(m-1)'[x2...xn]
* where P1' through Pm-1' have any occurrences of x1 substituted as
* F[x2...xn].
*
* UNWIND_FORALL_CONV eliminates universal
* quantifiers where the quantified variable
* is restricted to a single point via an equality in the
* conjuncts of the body. Given a term of the form
* !x1 x2 ... xn. P1[x1..xn] ==> P2[x1..xn] ==> ... ==> Pm[x1..xn]
* where one of Pk (k < m) is
* "x1 = F[x2...xn]"
* or "F[x2...xn] = x1"
* or "x1"
* or "~x1"
* UNWIND_FORALL_CONV eliminates the variable x1 from the
* quantification and converts the term to
* !x2...xn. P1'[x2...xn] ==> ...P(m-1)'[x2...xn] ==> Pm[x1..xn]
* where P1' through Pm-1' have any occurrences of x1 substituted as
* F[x2...xn], and Pk has been removed.
*
* The constraint can also occur within conjuncts of P1, P2 ... P(m-1).
*
* USES
*
* Eliminating trivial existential and universal quantifiers.
*
* EXAMPLES
*
* - UNWIND_EXISTS_CONV (--`?inp. inp /\ P inp`--);
* |- (?inp. inp /\ P inp) = P T : thm
*
* - UNWIND_EXISTS_CONV (--`?inp (f:'a->num). (inp = f x) /\ P f inp`--);
* |- (?inp f. (inp = f x) /\ P f inp) = (?f. P f (f x)) : thm
*
* - UNWIND_EXISTS_CONV (--`?inp. ~inp /\ P inp`--);
* |- (?inp. ~inp /\ P inp) = P F : thm
*
* UNWIND_FORALL_CONV (--`!x. (x = 3) ==> P x`--);
* UNWIND_FORALL_CONV (--`!x. (x = 3) /\ Q x ==> P x`--);
* UNWIND_FORALL_CONV (--`!x. (3 = x) /\ Q x ==> P x`--);
* UNWIND_FORALL_CONV (--`!x. (x < y) ==> (x = 3) /\ Q x ==> P x`--);
* UNWIND_FORALL_CONV (--`!Q R. (x = 3) /\ Q /\ P x ==> R Q`--);
* UNWIND_FORALL_CONV (--`!Q R. (x = 3) /\ ~Q /\ P x ==> R Q`--);
*
* TESTING CODE
*
* use "3/simplifier/src/UNWIND.sml";
* open UNWIND;
*------------------------------------------------------------------------*)
signature Unwind =
sig
include Abbrev
val UNWIND_EXISTS_CONV : conv
val UNWIND_EXISTS_TAC : tactic
val UNWIND_EXISTS_RULE : thm -> thm
val UNWIND_FORALL_CONV : conv
val UNWIND_FORALL_TAC : tactic
val UNWIND_FORALL_RULE : thm -> thm
end (* sig *)
HOL 4, Kananaskis-13