Structure bisimulationTheory
signature bisimulationTheory =
sig
type thm = Thm.thm
(* Definitions *)
val BISIM_def : thm
val ETS_def : thm
val WBISIM_def : thm
val WTS_def : thm
(* Theorems *)
val BISIM_ID : thm
val BISIM_IMP_WBISIM : thm
val BISIM_INV : thm
val BISIM_O : thm
val BISIM_REL_IMP_WBISIM_REL : thm
val BISIM_REL_IS_BISIM : thm
val BISIM_REL_IS_EQUIV_REL : thm
val BISIM_REL_RSUBSET_WBISIM_REL : thm
val BISIM_REL_cases : thm
val BISIM_REL_coind : thm
val BISIM_REL_def : thm
val BISIM_REL_rules : thm
val BISIM_RUNION : thm
val ETS_REFL : thm
val ETS_TRANS : thm
val ETS_WTS_ETS : thm
val TS_IMP_ETS : thm
val TS_IMP_WTS : thm
val WBISIM_ID : thm
val WBISIM_INV : thm
val WBISIM_O : thm
val WBISIM_REL_IS_EQUIV_REL : thm
val WBISIM_REL_IS_WBISIM : thm
val WBISIM_REL_cases : thm
val WBISIM_REL_coind : thm
val WBISIM_REL_def : thm
val WBISIM_REL_rules : thm
val WBISIM_RUNION : thm
val bisimulation_grammars : type_grammar.grammar * term_grammar.grammar
(*
[relation] Parent theory of "bisimulation"
[BISIM_def] Definition
⊢ ∀ts R.
BISIM ts R ⇔
∀p q l.
R p q ⇒
(∀p'. ts p l p' ⇒ ∃q'. ts q l q' ∧ R p' q') ∧
∀q'. ts q l q' ⇒ ∃p'. ts p l p' ∧ R p' q'
[ETS_def] Definition
⊢ ∀ts tau. ETS ts tau = (λx y. ts x tau y)⃰
[WBISIM_def] Definition
⊢ ∀ts tau R.
WBISIM ts tau R ⇔
∀p q.
R p q ⇒
(∀l.
l ≠ tau ⇒
(∀p'. ts p l p' ⇒ ∃q'. WTS ts tau q l q' ∧ R p' q') ∧
∀q'. ts q l q' ⇒ ∃p'. WTS ts tau p l p' ∧ R p' q') ∧
(∀p'. ts p tau p' ⇒ ∃q'. ETS ts tau q q' ∧ R p' q') ∧
∀q'. ts q tau q' ⇒ ∃p'. ETS ts tau p p' ∧ R p' q'
[WTS_def] Definition
⊢ ∀ts tau.
WTS ts tau =
(λp l q. ∃p' q'. ETS ts tau p p' ∧ ts p' l q' ∧ ETS ts tau q' q)
[BISIM_ID] Theorem
⊢ ∀ts. BISIM ts $=
[BISIM_IMP_WBISIM] Theorem
⊢ ∀ts tau R. BISIM ts R ⇒ WBISIM ts tau R
[BISIM_INV] Theorem
⊢ ∀ts R. BISIM ts R ⇒ BISIM ts Rᵀ
[BISIM_O] Theorem
⊢ ∀ts R R'. BISIM ts R ∧ BISIM ts R' ⇒ BISIM ts (R' ∘ᵣ R)
[BISIM_REL_IMP_WBISIM_REL] Theorem
⊢ ∀ts tau p q. BISIM_REL ts p q ⇒ WBISIM_REL ts tau p q
[BISIM_REL_IS_BISIM] Theorem
⊢ ∀ts. BISIM ts (BISIM_REL ts)
[BISIM_REL_IS_EQUIV_REL] Theorem
⊢ ∀ts. equivalence (BISIM_REL ts)
[BISIM_REL_RSUBSET_WBISIM_REL] Theorem
⊢ ∀ts tau. BISIM_REL ts ⊆ᵣ WBISIM_REL ts tau
[BISIM_REL_cases] Theorem
⊢ ∀ts a0 a1.
BISIM_REL ts a0 a1 ⇔
∀l.
(∀p'. ts a0 l p' ⇒ ∃q'. ts a1 l q' ∧ BISIM_REL ts p' q') ∧
∀q'. ts a1 l q' ⇒ ∃p'. ts a0 l p' ∧ BISIM_REL ts p' q'
[BISIM_REL_coind] Theorem
⊢ ∀ts BISIM_REL'.
(∀a0 a1.
BISIM_REL' a0 a1 ⇒
∀l.
(∀p'. ts a0 l p' ⇒ ∃q'. ts a1 l q' ∧ BISIM_REL' p' q') ∧
∀q'. ts a1 l q' ⇒ ∃p'. ts a0 l p' ∧ BISIM_REL' p' q') ⇒
∀a0 a1. BISIM_REL' a0 a1 ⇒ BISIM_REL ts a0 a1
[BISIM_REL_def] Theorem
⊢ ∀ts. BISIM_REL ts = (λp q. ∃R. BISIM ts R ∧ R p q)
[BISIM_REL_rules] Theorem
⊢ ∀ts p q.
(∀l.
(∀p'. ts p l p' ⇒ ∃q'. ts q l q' ∧ BISIM_REL ts p' q') ∧
∀q'. ts q l q' ⇒ ∃p'. ts p l p' ∧ BISIM_REL ts p' q') ⇒
BISIM_REL ts p q
[BISIM_RUNION] Theorem
⊢ ∀ts R R'. BISIM ts R ∧ BISIM ts R' ⇒ BISIM ts (R ∪ᵣ R')
[ETS_REFL] Theorem
⊢ ∀ts tau p. ETS ts tau p p
[ETS_TRANS] Theorem
⊢ ∀ts tau x y z. ETS ts tau x y ∧ ETS ts tau y z ⇒ ETS ts tau x z
[ETS_WTS_ETS] Theorem
⊢ ∀ts tau p p1 l p2 p'.
ETS ts tau p p1 ∧ WTS ts tau p1 l p2 ∧ ETS ts tau p2 p' ⇒
WTS ts tau p l p'
[TS_IMP_ETS] Theorem
⊢ ∀ts tau p q. ts p tau q ⇒ ETS ts tau p q
[TS_IMP_WTS] Theorem
⊢ ∀ts tau p l q. ts p l q ⇒ WTS ts tau p l q
[WBISIM_ID] Theorem
⊢ ∀ts tau. WBISIM ts tau $=
[WBISIM_INV] Theorem
⊢ ∀ts tau R. WBISIM ts tau R ⇒ WBISIM ts tau Rᵀ
[WBISIM_O] Theorem
⊢ ∀ts tau R R'.
WBISIM ts tau R ∧ WBISIM ts tau R' ⇒ WBISIM ts tau (R' ∘ᵣ R)
[WBISIM_REL_IS_EQUIV_REL] Theorem
⊢ ∀ts tau. equivalence (WBISIM_REL ts tau)
[WBISIM_REL_IS_WBISIM] Theorem
⊢ ∀ts tau. WBISIM ts tau (WBISIM_REL ts tau)
[WBISIM_REL_cases] Theorem
⊢ ∀ts tau a0 a1.
WBISIM_REL ts tau a0 a1 ⇔
(∀l.
l ≠ tau ⇒
(∀p'.
ts a0 l p' ⇒
∃q'. WTS ts tau a1 l q' ∧ WBISIM_REL ts tau p' q') ∧
∀q'.
ts a1 l q' ⇒
∃p'. WTS ts tau a0 l p' ∧ WBISIM_REL ts tau p' q') ∧
(∀p'.
ts a0 tau p' ⇒
∃q'. ETS ts tau a1 q' ∧ WBISIM_REL ts tau p' q') ∧
∀q'.
ts a1 tau q' ⇒
∃p'. ETS ts tau a0 p' ∧ WBISIM_REL ts tau p' q'
[WBISIM_REL_coind] Theorem
⊢ ∀ts tau WBISIM_REL'.
(∀a0 a1.
WBISIM_REL' a0 a1 ⇒
(∀l.
l ≠ tau ⇒
(∀p'.
ts a0 l p' ⇒
∃q'. WTS ts tau a1 l q' ∧ WBISIM_REL' p' q') ∧
∀q'.
ts a1 l q' ⇒
∃p'. WTS ts tau a0 l p' ∧ WBISIM_REL' p' q') ∧
(∀p'.
ts a0 tau p' ⇒
∃q'. ETS ts tau a1 q' ∧ WBISIM_REL' p' q') ∧
∀q'.
ts a1 tau q' ⇒
∃p'. ETS ts tau a0 p' ∧ WBISIM_REL' p' q') ⇒
∀a0 a1. WBISIM_REL' a0 a1 ⇒ WBISIM_REL ts tau a0 a1
[WBISIM_REL_def] Theorem
⊢ ∀ts tau. WBISIM_REL ts tau = (λp q. ∃R. WBISIM ts tau R ∧ R p q)
[WBISIM_REL_rules] Theorem
⊢ ∀ts tau p q.
(∀l.
l ≠ tau ⇒
(∀p'.
ts p l p' ⇒
∃q'. WTS ts tau q l q' ∧ WBISIM_REL ts tau p' q') ∧
∀q'.
ts q l q' ⇒
∃p'. WTS ts tau p l p' ∧ WBISIM_REL ts tau p' q') ∧
(∀p'.
ts p tau p' ⇒
∃q'. ETS ts tau q q' ∧ WBISIM_REL ts tau p' q') ∧
(∀q'.
ts q tau q' ⇒
∃p'. ETS ts tau p p' ∧ WBISIM_REL ts tau p' q') ⇒
WBISIM_REL ts tau p q
[WBISIM_RUNION] Theorem
⊢ ∀ts tau R R'.
WBISIM ts tau R ∧ WBISIM ts tau R' ⇒ WBISIM ts tau (R ∪ᵣ R')
*)
end
HOL 4, Kananaskis-13