Structure blastTheory
signature blastTheory =
sig
type thm = Thm.thm
(* Definitions *)
val BCARRY_def : thm
val BSUM_def : thm
val bcarry_def : thm
val bsum_def : thm
(* Theorems *)
val BCARRY_EQ : thm
val BCARRY_LEM : thm
val BCARRY_compute : thm
val BITWISE_ADD : thm
val BITWISE_LO : thm
val BITWISE_MUL : thm
val BITWISE_SUB : thm
val BSUM_EQ : thm
val BSUM_LEM : thm
val word_asr_bv_expand : thm
val word_lsl_bv_expand : thm
val word_lsr_bv_expand : thm
val word_rol_bv_expand : thm
val word_ror_bv_expand : thm
val blast_grammars : type_grammar.grammar * term_grammar.grammar
(*
[words] Parent theory of "blast"
[BCARRY_def] Definition
⊢ (∀x y c. BCARRY 0 x y c ⇔ c) ∧
∀i x y c.
BCARRY (SUC i) x y c ⇔ bcarry (x i) (y i) (BCARRY i x y c)
[BSUM_def] Definition
⊢ ∀i x y c. BSUM i x y c ⇔ bsum (x i) (y i) (BCARRY i x y c)
[bcarry_def] Definition
⊢ ∀x y c. bcarry x y c ⇔ x ∧ y ∨ (x ∨ y) ∧ c
[bsum_def] Definition
⊢ ∀x y c. bsum x y c ⇔ ((x ⇔ ¬y) ⇔ ¬c)
[BCARRY_EQ] Theorem
⊢ ∀n c x1 x2 y1 y2.
(∀i. i < n ⇒ (x1 i ⇔ x2 i) ∧ (y1 i ⇔ y2 i)) ⇒
(BCARRY n x1 y1 c ⇔ BCARRY n x2 y2 c)
[BCARRY_LEM] Theorem
⊢ ∀i x y c.
0 < i ⇒
(BCARRY i (λi. BIT i x) (λi. BIT i y) c ⇔
BIT i
(BITS (i − 1) 0 x + BITS (i − 1) 0 y + if c then 1 else 0))
[BCARRY_compute] Theorem
⊢ (∀x y c. BCARRY 0 x y c ⇔ c) ∧
(∀i x y c.
BCARRY (NUMERAL (BIT1 i)) x y c ⇔
bcarry (x (NUMERAL (BIT1 i) − 1)) (y (NUMERAL (BIT1 i) − 1))
(BCARRY (NUMERAL (BIT1 i) − 1) x y c)) ∧
∀i x y c.
BCARRY (NUMERAL (BIT2 i)) x y c ⇔
bcarry (x (NUMERAL (BIT1 i))) (y (NUMERAL (BIT1 i)))
(BCARRY (NUMERAL (BIT1 i)) x y c)
[BITWISE_ADD] Theorem
⊢ ∀x y. x + y = FCP i. BSUM i ($' x) ($' y) F
[BITWISE_LO] Theorem
⊢ ∀x y. x <₊ y ⇔ ¬BCARRY (dimindex (:α)) ($' x) ($~ ∘ $' y) T
[BITWISE_MUL] Theorem
⊢ ∀w m.
w * m =
FOLDL (λa j. a + FCP i. w ' j ∧ j ≤ i ∧ m ' (i − j)) 0w
(COUNT_LIST (dimindex (:α)))
[BITWISE_SUB] Theorem
⊢ ∀x y. x − y = FCP i. BSUM i ($' x) ($~ ∘ $' y) T
[BSUM_EQ] Theorem
⊢ ∀n c x1 x2 y1 y2.
(∀i. i ≤ n ⇒ (x1 i ⇔ x2 i) ∧ (y1 i ⇔ y2 i)) ⇒
(BSUM n x1 y1 c ⇔ BSUM n x2 y2 c)
[BSUM_LEM] Theorem
⊢ ∀i x y c.
BSUM i (λi. BIT i x) (λi. BIT i y) c ⇔
BIT i (x + y + if c then 1 else 0)
[word_asr_bv_expand] Theorem
⊢ ∀w m.
w >>~ m =
if dimindex (:α) = 1 then $FCP (K (w ' 0))
else
FCP k.
FOLDL
(λa j.
a ∨
(LOG2 (dimindex (:α) − 1) -- 0) m = n2w j ∧
(w ≫ j) ' k) F (COUNT_LIST (dimindex (:α))) ∧
(dimindex (:α) − 1 -- LOG2 (dimindex (:α) − 1) + 1) m =
0w ∨
n2w (dimindex (:α) − 1) <₊ m ∧ w ' (dimindex (:α) − 1)
[word_lsl_bv_expand] Theorem
⊢ ∀w m.
w <<~ m =
if dimindex (:α) = 1 then $FCP (K (¬m ' 0 ∧ w ' 0))
else
FCP k.
FOLDL
(λa j.
a ∨
(LOG2 (dimindex (:α) − 1) -- 0) m = n2w j ∧
j ≤ k ∧ w ' (k − j)) F
(COUNT_LIST (dimindex (:α))) ∧
(dimindex (:α) − 1 -- LOG2 (dimindex (:α) − 1) + 1) m =
0w
[word_lsr_bv_expand] Theorem
⊢ ∀w m.
w >>>~ m =
if dimindex (:α) = 1 then $FCP (K (¬m ' 0 ∧ w ' 0))
else
FCP k.
FOLDL
(λa j.
a ∨
(LOG2 (dimindex (:α) − 1) -- 0) m = n2w j ∧
k + j < dimindex (:α) ∧ w ' (k + j)) F
(COUNT_LIST (dimindex (:α))) ∧
(dimindex (:α) − 1 -- LOG2 (dimindex (:α) − 1) + 1) m =
0w
[word_rol_bv_expand] Theorem
⊢ ∀w m.
w #<<~ m =
FCP k.
FOLDL
(λa j.
a ∨
word_mod m (n2w (dimindex (:α))) = n2w j ∧
w '
((k + (dimindex (:α) − j) MOD dimindex (:α)) MOD
dimindex (:α))) F (COUNT_LIST (dimindex (:α)))
[word_ror_bv_expand] Theorem
⊢ ∀w m.
w #>>~ m =
FCP k.
FOLDL
(λa j.
a ∨
word_mod m (n2w (dimindex (:α))) = n2w j ∧
w ' ((j + k) MOD dimindex (:α))) F
(COUNT_LIST (dimindex (:α)))
*)
end
HOL 4, Kananaskis-13