Structure comparisonTheory
signature comparisonTheory =
sig
type thm = Thm.thm
(* Definitions *)
val equiv_inj_def : thm
val good_cmp_def : thm
val resp_equiv2_def : thm
val resp_equiv_def : thm
(* Theorems *)
val TO_inv_invert : thm
val TO_of_LinearOrder_LLEX : thm
val TotOrd_list_cmp : thm
val TotOrder_imp_good_cmp : thm
val antisym_resp_equiv : thm
val bool_cmp_antisym : thm
val bool_cmp_def : thm
val bool_cmp_good : thm
val char_cmp_antisym : thm
val char_cmp_charOrd : thm
val char_cmp_def : thm
val char_cmp_good : thm
val cmp_thms : thm
val good_cmp_Less_irrefl_trans : thm
val good_cmp_Less_trans : thm
val good_cmp_thm : thm
val good_cmp_trans : thm
val list_cmp_ListOrd : thm
val list_cmp_antisym : thm
val list_cmp_cong : thm
val list_cmp_equal_list_rel : thm
val list_cmp_good : thm
val num_cmp_antisym : thm
val num_cmp_def : thm
val num_cmp_good : thm
val num_cmp_numOrd : thm
val option_cmp2_TO_inv : thm
val option_cmp2_antisym : thm
val option_cmp2_cong : thm
val option_cmp2_def : thm
val option_cmp2_good : thm
val option_cmp2_ind : thm
val option_cmp_antisym : thm
val option_cmp_cong : thm
val option_cmp_def : thm
val option_cmp_good : thm
val pair_cmp_antisym : thm
val pair_cmp_cong : thm
val pair_cmp_def : thm
val pair_cmp_good : thm
val pair_cmp_lexTO : thm
val string_cmp_antisym : thm
val string_cmp_def : thm
val string_cmp_good : thm
val string_cmp_stringto : thm
val comparison_grammars : type_grammar.grammar * term_grammar.grammar
(*
[toto] Parent theory of "comparison"
[equiv_inj_def] Definition
⊢ ∀cmp cmp2 f.
equiv_inj cmp cmp2 f ⇔
∀k1 k2. cmp2 (f k1) (f k2) = Equal ⇒ cmp k1 k2 = Equal
[good_cmp_def] Definition
⊢ ∀cmp.
good_cmp cmp ⇔
(∀x. cmp x x = Equal) ∧
(∀x y. cmp x y = Equal ⇒ cmp y x = Equal) ∧
(∀x y. cmp x y = Greater ⇔ cmp y x = Less) ∧
(∀x y z. cmp x y = Equal ∧ cmp y z = Less ⇒ cmp x z = Less) ∧
(∀x y z. cmp x y = Less ∧ cmp y z = Equal ⇒ cmp x z = Less) ∧
(∀x y z. cmp x y = Equal ∧ cmp y z = Equal ⇒ cmp x z = Equal) ∧
∀x y z. cmp x y = Less ∧ cmp y z = Less ⇒ cmp x z = Less
[resp_equiv2_def] Definition
⊢ ∀cmp cmp2 f.
resp_equiv2 cmp cmp2 f ⇔
∀k1 k2. cmp k1 k2 = Equal ⇒ cmp2 (f k1) (f k2) = Equal
[resp_equiv_def] Definition
⊢ ∀cmp f.
resp_equiv cmp f ⇔
∀k1 k2 v. cmp k1 k2 = Equal ⇒ f k1 v = f k2 v
[TO_inv_invert] Theorem
⊢ ∀c. TotOrd c ⇒ TO_inv c = CURRY (invert ∘ UNCURRY c)
[TO_of_LinearOrder_LLEX] Theorem
⊢ ∀R.
irreflexive R ⇒
TO_of_LinearOrder (LLEX R) = list_cmp (TO_of_LinearOrder R)
[TotOrd_list_cmp] Theorem
⊢ ∀c. TotOrd c ⇒ TotOrd (list_cmp c)
[TotOrder_imp_good_cmp] Theorem
⊢ ∀cmp. TotOrd cmp ⇒ good_cmp cmp
[antisym_resp_equiv] Theorem
⊢ ∀cmp f.
(∀x y. cmp x y = Equal ⇒ x = y) ⇒
resp_equiv cmp f ∧
∀cmp2. good_cmp cmp2 ⇒ resp_equiv2 cmp cmp2 f
[bool_cmp_antisym] Theorem
⊢ ∀x y. bool_cmp x y = Equal ⇔ (x ⇔ y)
[bool_cmp_def] Theorem
⊢ bool_cmp T T = Equal ∧ bool_cmp F F = Equal ∧
bool_cmp T F = Greater ∧ bool_cmp F T = Less
[bool_cmp_good] Theorem
⊢ good_cmp bool_cmp
[char_cmp_antisym] Theorem
⊢ ∀x y. char_cmp x y = Equal ⇔ x = y
[char_cmp_charOrd] Theorem
⊢ char_cmp = charOrd
[char_cmp_def] Theorem
⊢ ∀c1 c2. char_cmp c1 c2 = num_cmp (ORD c1) (ORD c2)
[char_cmp_good] Theorem
⊢ good_cmp char_cmp
[cmp_thms] Theorem
⊢ (Less ≠ Equal ∧ Less ≠ Greater ∧ Equal ≠ Greater) ∧
((∀v0 v1 v2.
(case Less of Less => v0 | Equal => v1 | Greater => v2) = v0) ∧
(∀v0 v1 v2.
(case Equal of Less => v0 | Equal => v1 | Greater => v2) = v1) ∧
∀v0 v1 v2.
(case Greater of Less => v0 | Equal => v1 | Greater => v2) =
v2) ∧ (∀a. a = Less ∨ a = Equal ∨ a = Greater) ∧
∀cmp.
good_cmp cmp ⇔
(∀x. cmp x x = Equal) ∧
(∀x y. cmp x y = Equal ⇒ cmp y x = Equal) ∧
(∀x y. cmp x y = Greater ⇔ cmp y x = Less) ∧
(∀x y z. cmp x y = Equal ∧ cmp y z = Less ⇒ cmp x z = Less) ∧
(∀x y z. cmp x y = Less ∧ cmp y z = Equal ⇒ cmp x z = Less) ∧
(∀x y z. cmp x y = Equal ∧ cmp y z = Equal ⇒ cmp x z = Equal) ∧
∀x y z. cmp x y = Less ∧ cmp y z = Less ⇒ cmp x z = Less
[good_cmp_Less_irrefl_trans] Theorem
⊢ ∀cmp.
good_cmp cmp ⇒
irreflexive (λk k'. cmp k k' = Less) ∧
transitive (λk k'. cmp k k' = Less)
[good_cmp_Less_trans] Theorem
⊢ ∀cmp. good_cmp cmp ⇒ transitive (λk k'. cmp k k' = Less)
[good_cmp_thm] Theorem
⊢ ∀cmp.
good_cmp cmp ⇔
(∀x. cmp x x = Equal) ∧
∀x y z.
(cmp x y = Greater ⇔ cmp y x = Less) ∧
(cmp x y = Less ∧ cmp y z = Equal ⇒ cmp x z = Less) ∧
(cmp x y = Less ∧ cmp y z = Less ⇒ cmp x z = Less)
[good_cmp_trans] Theorem
⊢ ∀cmp. good_cmp cmp ⇒ transitive (λ(k,v) (k',v'). cmp k k' = Less)
[list_cmp_ListOrd] Theorem
⊢ ∀c. TotOrd c ⇒ list_cmp c = ListOrd (TO c)
[list_cmp_antisym] Theorem
⊢ ∀cmp x y.
(∀x y. cmp x y = Equal ⇔ x = y) ⇒
(list_cmp cmp x y = Equal ⇔ x = y)
[list_cmp_cong] Theorem
⊢ ∀cmp l1 l2 cmp' l1' l2'.
l1 = l1' ∧ l2 = l2' ∧
(∀x x'. MEM x l1' ∧ MEM x' l2' ⇒ cmp x x' = cmp' x x') ⇒
list_cmp cmp l1 l2 = list_cmp cmp' l1' l2'
[list_cmp_equal_list_rel] Theorem
⊢ ∀cmp l1 l2.
list_cmp cmp l1 l2 = Equal ⇔
LIST_REL (λx y. cmp x y = Equal) l1 l2
[list_cmp_good] Theorem
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (list_cmp cmp)
[num_cmp_antisym] Theorem
⊢ ∀x y. num_cmp x y = Equal ⇔ x = y
[num_cmp_def] Theorem
⊢ ∀n1 n2.
num_cmp n1 n2 =
if n1 = n2 then Equal else if n1 < n2 then Less else Greater
[num_cmp_good] Theorem
⊢ good_cmp num_cmp
[num_cmp_numOrd] Theorem
⊢ num_cmp = numOrd
[option_cmp2_TO_inv] Theorem
⊢ ∀c. option_cmp2 c = TO_inv (option_cmp (TO_inv c))
[option_cmp2_antisym] Theorem
⊢ ∀cmp x y.
(∀x y. cmp x y = Equal ⇔ x = y) ⇒
(option_cmp2 cmp x y = Equal ⇔ x = y)
[option_cmp2_cong] Theorem
⊢ ∀cmp v1 v2 cmp' v1' v2'.
v1 = v1' ∧ v2 = v2' ∧
(∀x x'. v1' = SOME x ∧ v2' = SOME x' ⇒ cmp x x' = cmp' x x') ⇒
option_cmp2 cmp v1 v2 = option_cmp2 cmp' v1' v2'
[option_cmp2_def] Theorem
⊢ option_cmp2 cmp NONE NONE = Equal ∧
option_cmp2 cmp NONE (SOME x') = Greater ∧
option_cmp2 cmp (SOME x) NONE = Less ∧
option_cmp2 cmp (SOME x) (SOME y) = cmp x y
[option_cmp2_good] Theorem
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp2 cmp)
[option_cmp2_ind] Theorem
⊢ ∀P.
(∀cmp. P cmp NONE NONE) ∧ (∀cmp x. P cmp NONE (SOME x)) ∧
(∀cmp x. P cmp (SOME x) NONE) ∧
(∀cmp x y. P cmp (SOME x) (SOME y)) ⇒
∀v v1 v2. P v v1 v2
[option_cmp_antisym] Theorem
⊢ ∀cmp x y.
(∀x y. cmp x y = Equal ⇔ x = y) ⇒
(option_cmp cmp x y = Equal ⇔ x = y)
[option_cmp_cong] Theorem
⊢ ∀cmp v1 v2 cmp' v1' v2'.
v1 = v1' ∧ v2 = v2' ∧
(∀x x'. v1' = SOME x ∧ v2' = SOME x' ⇒ cmp x x' = cmp' x x') ⇒
option_cmp cmp v1 v2 = option_cmp cmp' v1' v2'
[option_cmp_def] Theorem
⊢ option_cmp c NONE NONE = Equal ∧
option_cmp c NONE (SOME v0) = Less ∧
option_cmp c (SOME v3) NONE = Greater ∧
option_cmp c (SOME v1) (SOME v2) = c v1 v2
[option_cmp_good] Theorem
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp cmp)
[pair_cmp_antisym] Theorem
⊢ ∀cmp1 cmp2 x y.
(∀x y. cmp1 x y = Equal ⇔ x = y) ∧
(∀x y. cmp2 x y = Equal ⇔ x = y) ⇒
(pair_cmp cmp1 cmp2 x y = Equal ⇔ x = y)
[pair_cmp_cong] Theorem
⊢ ∀cmp1 cmp2 v1 v2 cmp1' cmp2' v1' v2'.
v1 = v1' ∧ v2 = v2' ∧
(∀a b c d. v1' = (a,b) ∧ v2' = (c,d) ⇒ cmp1 a c = cmp1' a c) ∧
(∀a b c d. v1' = (a,b) ∧ v2' = (c,d) ⇒ cmp2 b d = cmp2' b d) ⇒
pair_cmp cmp1 cmp2 v1 v2 = pair_cmp cmp1' cmp2' v1' v2'
[pair_cmp_def] Theorem
⊢ pair_cmp c1 c2 x y =
case c1 (FST x) (FST y) of
Less => Less
| Equal => c2 (SND x) (SND y)
| Greater => Greater
[pair_cmp_good] Theorem
⊢ ∀cmp1 cmp2.
good_cmp cmp1 ∧ good_cmp cmp2 ⇒ good_cmp (pair_cmp cmp1 cmp2)
[pair_cmp_lexTO] Theorem
⊢ ∀R V. TotOrd R ∧ TotOrd V ⇒ pair_cmp R V = R lexTO V
[string_cmp_antisym] Theorem
⊢ ∀x y. string_cmp x y = Equal ⇔ x = y
[string_cmp_def] Theorem
⊢ string_cmp = list_cmp char_cmp
[string_cmp_good] Theorem
⊢ good_cmp string_cmp
[string_cmp_stringto] Theorem
⊢ string_cmp = apto stringto
*)
end
HOL 4, Kananaskis-13