Structure defCNFTheory
signature defCNFTheory =
sig
type thm = Thm.thm
(* Definitions *)
val DEF_def : thm
val OKDEF_def : thm
(* Theorems *)
val BIGSTEP : thm
val CONSISTENCY : thm
val DEF_SNOC : thm
val FINAL_DEF : thm
val OKDEF_SNOC : thm
val OK_def : thm
val OK_ind : thm
val UNIQUE_def : thm
val UNIQUE_ind : thm
val defCNF_grammars : type_grammar.grammar * term_grammar.grammar
(*
[rich_list] Parent theory of "defCNF"
[DEF_def] Definition
⊢ (∀v n. defCNF$DEF v n [] ⇔ T) ∧
∀v n x xs.
defCNF$DEF v n (x::xs) ⇔
defCNF$UNIQUE v n x ∧ defCNF$DEF v (SUC n) xs
[OKDEF_def] Definition
⊢ (∀n. defCNF$OKDEF n [] ⇔ T) ∧
∀n x xs.
defCNF$OKDEF n (x::xs) ⇔
defCNF$OK n x ∧ defCNF$OKDEF (SUC n) xs
[BIGSTEP] Theorem
⊢ ∀P Q R. (∀v. P v ⇒ (Q ⇔ R v)) ⇒ ((∃v. P v) ∧ Q ⇔ ∃v. P v ∧ R v)
[CONSISTENCY] Theorem
⊢ ∀n l. defCNF$OKDEF n l ⇒ ∃v. defCNF$DEF v n l
[DEF_SNOC] Theorem
⊢ ∀n x l v.
defCNF$DEF v n (SNOC x l) ⇔
defCNF$DEF v n l ∧ defCNF$UNIQUE v (n + LENGTH l) x
[FINAL_DEF] Theorem
⊢ ∀v n x. (v n ⇔ x) ⇔ (v n ⇔ x) ∧ defCNF$DEF v (SUC n) []
[OKDEF_SNOC] Theorem
⊢ ∀n x l.
defCNF$OKDEF n (SNOC x l) ⇔
defCNF$OKDEF n l ∧ defCNF$OK (n + LENGTH l) x
[OK_def] Theorem
⊢ (defCNF$OK n (conn,INL i,INL j) ⇔ i < n ∧ j < n) ∧
(defCNF$OK n (conn,INL i,INR b) ⇔ i < n) ∧
(defCNF$OK n (conn,INR a,INL j) ⇔ j < n) ∧
(defCNF$OK n (conn,INR a,INR b) ⇔ T)
[OK_ind] Theorem
⊢ ∀P.
(∀n conn i j. P n (conn,INL i,INL j)) ∧
(∀n conn i b. P n (conn,INL i,INR b)) ∧
(∀n conn a j. P n (conn,INR a,INL j)) ∧
(∀n conn a b. P n (conn,INR a,INR b)) ⇒
∀v v1 v2 v3. P v (v1,v2,v3)
[UNIQUE_def] Theorem
⊢ (defCNF$UNIQUE v n (conn,INL i,INL j) ⇔ (v n ⇔ conn (v i) (v j))) ∧
(defCNF$UNIQUE v n (conn,INL i,INR b) ⇔ (v n ⇔ conn (v i) b)) ∧
(defCNF$UNIQUE v n (conn,INR a,INL j) ⇔ (v n ⇔ conn a (v j))) ∧
(defCNF$UNIQUE v n (conn,INR a,INR b) ⇔ (v n ⇔ conn a b))
[UNIQUE_ind] Theorem
⊢ ∀P.
(∀v n conn i j. P v n (conn,INL i,INL j)) ∧
(∀v n conn i b. P v n (conn,INL i,INR b)) ∧
(∀v n conn a j. P v n (conn,INR a,INL j)) ∧
(∀v n conn a b. P v n (conn,INR a,INR b)) ⇒
∀v v1 v2 v3 v4. P v v1 (v2,v3,v4)
*)
end
HOL 4, Kananaskis-13