Structure dirGraphTheory
signature dirGraphTheory =
sig
type thm = Thm.thm
(* Definitions *)
val EXCLUDE_def : thm
val Parents_def : thm
val REACH_LIST_def : thm
val REACH_def : thm
(* Theorems *)
val EXCLUDE_LEM : thm
val REACH_EXCLUDE : thm
val REACH_LEM1 : thm
val REACH_LEM2 : thm
val dirGraph_grammars : type_grammar.grammar * term_grammar.grammar
(*
[indexedLists] Parent theory of "dirGraph"
[patternMatches] Parent theory of "dirGraph"
[EXCLUDE_def] Definition
⊢ ∀G ex node. EXCLUDE G ex node = if node ∈ ex then [] else G node
[Parents_def] Definition
⊢ ∀G. Parents G = {x | G x ≠ []}
[REACH_LIST_def] Definition
⊢ ∀G nodes y. REACH_LIST G nodes y ⇔ ∃x. MEM x nodes ∧ y ∈ REACH G x
[REACH_def] Definition
⊢ ∀G. REACH G = (λx y. MEM y (G x))⃰
[EXCLUDE_LEM] Theorem
⊢ ∀G x l. EXCLUDE G (x INSERT l) = EXCLUDE (EXCLUDE G l) {x}
[REACH_EXCLUDE] Theorem
⊢ ∀G x. REACH (EXCLUDE G x) = (λx' y. x' ∉ x ∧ MEM y (G x'))⃰
[REACH_LEM1] Theorem
⊢ ∀p G seen.
p ∉ seen ⇒
REACH (EXCLUDE G seen) p =
p INSERT REACH_LIST (EXCLUDE G (p INSERT seen)) (G p)
[REACH_LEM2] Theorem
⊢ ∀G x y. REACH G x y ⇒ ∀z. ¬REACH G z y ⇒ REACH (EXCLUDE G {z}) x y
*)
end
HOL 4, Kananaskis-13