Structure extrealTheory
signature extrealTheory =
sig
type thm = Thm.thm
(* Definitions *)
val EXTREAL_SUM_IMAGE_DEF : thm
val Q_set_def : thm
val ceiling_def : thm
val ext_mono_decreasing_def : thm
val ext_mono_increasing_def : thm
val ext_suminf_def : thm
val extreal_TY_DEF : thm
val extreal_abs_primitive_def : thm
val extreal_ainv_def : thm
val extreal_case_def : thm
val extreal_div_def : thm
val extreal_exp_def : thm
val extreal_inf_def : thm
val extreal_inv_def : thm
val extreal_lg_def : thm
val extreal_logr_def : thm
val extreal_lt_def : thm
val extreal_max_def : thm
val extreal_min_def : thm
val extreal_of_num_def : thm
val extreal_pow_def : thm
val extreal_size_def : thm
val extreal_sqrt_def : thm
val extreal_sup_def : thm
val mono_decreasing_def : thm
val mono_increasing_def : thm
val open_interval_def : thm
val open_intervals_set_def : thm
val rational_intervals_def : thm
val real_def : thm
(* Theorems *)
val ADD_IN_Q : thm
val CEILING_LBOUND : thm
val CEILING_UBOUND : thm
val CMUL_IN_Q : thm
val COUNTABLE_ENUM_Q : thm
val COUNTABLE_RATIONAL_INTERVALS : thm
val CROSS_COUNTABLE : thm
val CROSS_COUNTABLE_LEMMA1 : thm
val CROSS_COUNTABLE_LEMMA2 : thm
val CROSS_COUNTABLE_UNIV : thm
val DIV_IN_Q : thm
val EXTREAL_ARCH : thm
val EXTREAL_ARCH_POW : thm
val EXTREAL_ARCH_POW_INV : thm
val EXTREAL_EQ_LADD : thm
val EXTREAL_SUM_IMAGE_0 : thm
val EXTREAL_SUM_IMAGE_ADD : thm
val EXTREAL_SUM_IMAGE_CMUL : thm
val EXTREAL_SUM_IMAGE_CMUL2 : thm
val EXTREAL_SUM_IMAGE_COUNT : thm
val EXTREAL_SUM_IMAGE_CROSS_SYM : thm
val EXTREAL_SUM_IMAGE_DISJOINT_UNION : thm
val EXTREAL_SUM_IMAGE_EQ : thm
val EXTREAL_SUM_IMAGE_EQ_CARD : thm
val EXTREAL_SUM_IMAGE_EXTREAL_SUM_IMAGE : thm
val EXTREAL_SUM_IMAGE_FINITE_CONST : thm
val EXTREAL_SUM_IMAGE_FINITE_SAME : thm
val EXTREAL_SUM_IMAGE_IF_ELIM : thm
val EXTREAL_SUM_IMAGE_IMAGE : thm
val EXTREAL_SUM_IMAGE_INTER_ELIM : thm
val EXTREAL_SUM_IMAGE_INTER_NONZERO : thm
val EXTREAL_SUM_IMAGE_INV_CARD_EQ_1 : thm
val EXTREAL_SUM_IMAGE_IN_IF : thm
val EXTREAL_SUM_IMAGE_IN_IF_ALT : thm
val EXTREAL_SUM_IMAGE_MONO : thm
val EXTREAL_SUM_IMAGE_MONO_SET : thm
val EXTREAL_SUM_IMAGE_NORMAL : thm
val EXTREAL_SUM_IMAGE_NOT_INFTY : thm
val EXTREAL_SUM_IMAGE_NOT_NEG_INF : thm
val EXTREAL_SUM_IMAGE_NOT_POS_INF : thm
val EXTREAL_SUM_IMAGE_POS : thm
val EXTREAL_SUM_IMAGE_POS_MEM_LE : thm
val EXTREAL_SUM_IMAGE_SING : thm
val EXTREAL_SUM_IMAGE_SPOS : thm
val EXTREAL_SUM_IMAGE_SUB : thm
val EXTREAL_SUM_IMAGE_THM : thm
val EXTREAL_SUM_IMAGE_ZERO : thm
val EXTREAL_SUM_IMAGE_ZERO_DIFF : thm
val INV_IN_Q : thm
val LOGR_MONO_LE : thm
val LOGR_MONO_LE_IMP : thm
val MUL_IN_Q : thm
val NUM_IN_Q : thm
val OPP_IN_Q : thm
val POW_NEG_ODD : thm
val POW_POS_EVEN : thm
val Q_COUNTABLE : thm
val Q_DENSE_IN_R : thm
val Q_DENSE_IN_R_LEMMA : thm
val Q_INFINITE : thm
val Q_not_infty : thm
val REAL_ARCH_POW : thm
val REAL_LE_MUL_EPSILON : thm
val REAL_LE_RDIV_EQ_NEG : thm
val REAL_LT_LMUL_0_NEG : thm
val REAL_LT_LMUL_NEG_0 : thm
val REAL_LT_LMUL_NEG_0_NEG : thm
val REAL_LT_RDIV_EQ_NEG : thm
val REAL_LT_RMUL_0_NEG : thm
val REAL_LT_RMUL_NEG_0 : thm
val REAL_LT_RMUL_NEG_0_NEG : thm
val SIMP_EXTREAL_ARCH : thm
val SIMP_REAL_ARCH : thm
val SIMP_REAL_ARCH_NEG : thm
val SUB_IN_Q : thm
val abs_bounds : thm
val abs_bounds_lt : thm
val abs_pos : thm
val abs_refl : thm
val add2_sub2 : thm
val add_assoc : thm
val add_comm : thm
val add_infty : thm
val add_ldistrib : thm
val add_ldistrib_neg : thm
val add_ldistrib_normal : thm
val add_ldistrib_normal2 : thm
val add_ldistrib_pos : thm
val add_lzero : thm
val add_not_infty : thm
val add_pow2 : thm
val add_rdistrib : thm
val add_rdistrib_normal : thm
val add_rdistrib_normal2 : thm
val add_rzero : thm
val add_sub : thm
val add_sub2 : thm
val datatype_extreal : thm
val div_add : thm
val div_one : thm
val entire : thm
val eq_add_sub_switch : thm
val eq_neg : thm
val eq_sub_ladd : thm
val eq_sub_ladd_normal : thm
val eq_sub_radd : thm
val eq_sub_switch : thm
val ext_mono_decreasing_suc : thm
val ext_mono_increasing_suc : thm
val ext_suminf_add : thm
val ext_suminf_cmul : thm
val ext_suminf_cmul_alt : thm
val ext_suminf_lt_infty : thm
val ext_suminf_mono : thm
val ext_suminf_sub : thm
val ext_suminf_sum : thm
val ext_suminf_suminf : thm
val extreal_11 : thm
val extreal_Axiom : thm
val extreal_abs_def : thm
val extreal_abs_ind : thm
val extreal_add_def : thm
val extreal_add_ind : thm
val extreal_case_cong : thm
val extreal_case_eq : thm
val extreal_cases : thm
val extreal_distinct : thm
val extreal_div_eq : thm
val extreal_eq_zero : thm
val extreal_induction : thm
val extreal_le_def : thm
val extreal_le_ind : thm
val extreal_lt_eq : thm
val extreal_mul_def : thm
val extreal_mul_ind : thm
val extreal_nchotomy : thm
val extreal_not_infty : thm
val extreal_sub_add : thm
val extreal_sub_def : thm
val extreal_sub_ind : thm
val fourth_cancel : thm
val half_between : thm
val half_cancel : thm
val inf_cminus : thm
val inf_const : thm
val inf_const_alt : thm
val inf_const_over_set : thm
val inf_eq : thm
val inf_le : thm
val inf_le_imp : thm
val inf_lt_infty : thm
val inf_min : thm
val inf_seq : thm
val inf_suc : thm
val inv_1over : thm
val inv_one : thm
val inv_pos : thm
val le_01 : thm
val le_02 : thm
val le_add : thm
val le_add2 : thm
val le_addr : thm
val le_addr_imp : thm
val le_antisym : thm
val le_epsilon : thm
val le_inf : thm
val le_infty : thm
val le_inv : thm
val le_ladd : thm
val le_ladd_imp : thm
val le_ldiv : thm
val le_lmul_imp : thm
val le_lneg : thm
val le_lsub_imp : thm
val le_lt : thm
val le_max : thm
val le_max1 : thm
val le_max2 : thm
val le_min : thm
val le_mul : thm
val le_mul_epsilon : thm
val le_mul_neg : thm
val le_neg : thm
val le_num : thm
val le_pow2 : thm
val le_radd : thm
val le_radd_imp : thm
val le_rdiv : thm
val le_refl : thm
val le_rmul_imp : thm
val le_sub_eq : thm
val le_sub_eq2 : thm
val le_sub_imp : thm
val le_sup : thm
val le_sup_imp : thm
val le_total : thm
val le_trans : thm
val let_add : thm
val let_add2 : thm
val let_add2_alt : thm
val let_mul : thm
val let_trans : thm
val linv_uniq : thm
val logr_not_infty : thm
val lt_01 : thm
val lt_02 : thm
val lt_add : thm
val lt_add2 : thm
val lt_addl : thm
val lt_antisym : thm
val lt_imp_le : thm
val lt_imp_ne : thm
val lt_infty : thm
val lt_ladd : thm
val lt_ldiv : thm
val lt_le : thm
val lt_lmul : thm
val lt_mul : thm
val lt_mul2 : thm
val lt_mul_neg : thm
val lt_neg : thm
val lt_radd : thm
val lt_rdiv : thm
val lt_rdiv_neg : thm
val lt_refl : thm
val lt_rmul : thm
val lt_sub : thm
val lt_sub_imp : thm
val lt_total : thm
val lt_trans : thm
val lte_add : thm
val lte_mul : thm
val lte_trans : thm
val max_comm : thm
val max_infty : thm
val max_le : thm
val max_le2_imp : thm
val max_refl : thm
val min_comm : thm
val min_infty : thm
val min_le : thm
val min_le1 : thm
val min_le2 : thm
val min_le2_imp : thm
val min_refl : thm
val mono_decreasing_suc : thm
val mono_increasing_converges_to_sup : thm
val mono_increasing_suc : thm
val mul_assoc : thm
val mul_comm : thm
val mul_le : thm
val mul_let : thm
val mul_lneg : thm
val mul_lone : thm
val mul_lt : thm
val mul_lte : thm
val mul_lzero : thm
val mul_not_infty : thm
val mul_not_infty2 : thm
val mul_rneg : thm
val mul_rone : thm
val mul_rzero : thm
val ne_01 : thm
val ne_02 : thm
val neg_0 : thm
val neg_eq0 : thm
val neg_minus1 : thm
val neg_mul2 : thm
val neg_neg : thm
val neg_sub : thm
val normal_real : thm
val num_not_infty : thm
val pow2_sqrt : thm
val pow_0 : thm
val pow_1 : thm
val pow_2 : thm
val pow_add : thm
val pow_le : thm
val pow_le_mono : thm
val pow_lt : thm
val pow_lt2 : thm
val pow_minus1 : thm
val pow_mul : thm
val pow_neg_odd : thm
val pow_not_infty : thm
val pow_pos_even : thm
val pow_pos_le : thm
val pow_pos_lt : thm
val pow_zero : thm
val pow_zero_imp : thm
val quotient_normal : thm
val rat_not_infty : thm
val real_normal : thm
val rinv_uniq : thm
val sqrt_mono_le : thm
val sqrt_pos_le : thm
val sqrt_pos_lt : thm
val sqrt_pow2 : thm
val sub_0 : thm
val sub_add : thm
val sub_add2 : thm
val sub_ldistrib : thm
val sub_le_eq : thm
val sub_le_eq2 : thm
val sub_le_imp : thm
val sub_le_imp2 : thm
val sub_le_switch : thm
val sub_le_switch2 : thm
val sub_le_zero : thm
val sub_lneg : thm
val sub_lt_imp : thm
val sub_lt_imp2 : thm
val sub_lt_zero : thm
val sub_lt_zero2 : thm
val sub_lzero : thm
val sub_not_infty : thm
val sub_rdistrib : thm
val sub_refl : thm
val sub_rneg : thm
val sub_rzero : thm
val sub_zero_le : thm
val sub_zero_lt : thm
val sub_zero_lt2 : thm
val sup_add_mono : thm
val sup_cmul : thm
val sup_const : thm
val sup_const_alt : thm
val sup_const_over_set : thm
val sup_eq : thm
val sup_le : thm
val sup_le_mono : thm
val sup_le_sup_imp : thm
val sup_lt : thm
val sup_lt_epsilon : thm
val sup_lt_infty : thm
val sup_max : thm
val sup_mono : thm
val sup_num : thm
val sup_seq : thm
val sup_suc : thm
val sup_sum_mono : thm
val third_cancel : thm
val thirds_between : thm
val extreal_grammars : type_grammar.grammar * term_grammar.grammar
(*
[util_prob] Parent theory of "extreal"
[EXTREAL_SUM_IMAGE_DEF] Definition
⊢ ∀f s. SIGMA f s = ITSET (λe acc. f e + acc) s 0
[Q_set_def] Definition
⊢ Q_set =
{x | ∃a b. (x = &a / &b) ∧ 0 < &b} ∪
{x | ∃a b. (x = -(&a / &b)) ∧ 0 < &b}
[ceiling_def] Definition
⊢ ∀x. ceiling (Normal x) = LEAST n. x ≤ &n
[ext_mono_decreasing_def] Definition
⊢ ∀f. mono_decreasing f ⇔ ∀m n. m ≤ n ⇒ f n ≤ f m
[ext_mono_increasing_def] Definition
⊢ ∀f. mono_increasing f ⇔ ∀m n. m ≤ n ⇒ f m ≤ f n
[ext_suminf_def] Definition
⊢ ∀f. suminf f = sup (IMAGE (λn. SIGMA f (count n)) 𝕌(:num))
[extreal_TY_DEF] Definition
⊢ ∃rep.
TYPE_DEFINITION
(λa0.
∀ $var$('extreal').
(∀a0.
(a0 =
ind_type$CONSTR 0 ARB (λn. ind_type$BOTTOM)) ∨
(a0 =
ind_type$CONSTR (SUC 0) ARB
(λn. ind_type$BOTTOM)) ∨
(∃a.
a0 =
(λa.
ind_type$CONSTR (SUC (SUC 0)) a
(λn. ind_type$BOTTOM)) a) ⇒
$var$('extreal') a0) ⇒
$var$('extreal') a0) rep
[extreal_abs_primitive_def] Definition
⊢ abs =
WFREC (@R. WF R)
(λextreal_abs a.
case a of
NegInf => I PosInf
| PosInf => I PosInf
| Normal x => I (Normal (abs x)))
[extreal_ainv_def] Definition
⊢ (-NegInf = PosInf) ∧ (-PosInf = NegInf) ∧
∀x. -Normal x = Normal (-x)
[extreal_case_def] Definition
⊢ (∀v v1 f. extreal_CASE NegInf v v1 f = v) ∧
(∀v v1 f. extreal_CASE PosInf v v1 f = v1) ∧
∀a v v1 f. extreal_CASE (Normal a) v v1 f = f a
[extreal_div_def] Definition
⊢ ∀x y. x / y = x * inv y
[extreal_exp_def] Definition
⊢ (∀x. exp (Normal x) = Normal (exp x)) ∧ (exp PosInf = PosInf) ∧
(exp NegInf = Normal 0)
[extreal_inf_def] Definition
⊢ ∀p. inf p = -sup (IMAGE numeric_negate p)
[extreal_inv_def] Definition
⊢ (inv NegInf = Normal 0) ∧ (inv PosInf = Normal 0) ∧
∀x. inv (Normal x) = Normal x⁻¹
[extreal_lg_def] Definition
⊢ ∀x. lg x = logr 2 x
[extreal_logr_def] Definition
⊢ (∀b x. logr b (Normal x) = Normal (logr b x)) ∧
(∀b. logr b PosInf = PosInf) ∧ ∀b. logr b NegInf = NegInf
[extreal_lt_def] Definition
⊢ ∀x y. x < y ⇔ ¬(y ≤ x)
[extreal_max_def] Definition
⊢ ∀x y. max x y = if x ≤ y then y else x
[extreal_min_def] Definition
⊢ ∀x y. min x y = if x ≤ y then x else y
[extreal_of_num_def] Definition
⊢ ∀n. &n = Normal (&n)
[extreal_pow_def] Definition
⊢ (∀a n. Normal a pow n = Normal (a pow n)) ∧
(∀n. PosInf pow n = if n = 0 then Normal 1 else PosInf) ∧
∀n.
NegInf pow n =
if n = 0 then Normal 1 else if EVEN n then PosInf else NegInf
[extreal_size_def] Definition
⊢ (extreal_size NegInf = 0) ∧ (extreal_size PosInf = 0) ∧
∀a. extreal_size (Normal a) = 1
[extreal_sqrt_def] Definition
⊢ (∀x. sqrt (Normal x) = Normal (sqrt x)) ∧ (sqrt PosInf = PosInf)
[extreal_sup_def] Definition
⊢ ∀p.
sup p =
if ∀x. (∀y. p y ⇒ y ≤ x) ⇒ (x = PosInf) then PosInf
else if ∀x. p x ⇒ (x = NegInf) then NegInf
else Normal (sup (λr. p (Normal r)))
[mono_decreasing_def] Definition
⊢ ∀f. mono_decreasing f ⇔ ∀m n. m ≤ n ⇒ f n ≤ f m
[mono_increasing_def] Definition
⊢ ∀f. mono_increasing f ⇔ ∀m n. m ≤ n ⇒ f m ≤ f n
[open_interval_def] Definition
⊢ ∀a b. open_interval a b = {x | a < x ∧ x < b}
[open_intervals_set_def] Definition
⊢ open_intervals_set =
{open_interval a b | a ∈ 𝕌(:extreal) ∧ b ∈ 𝕌(:extreal)}
[rational_intervals_def] Definition
⊢ rational_intervals = {open_interval a b | a ∈ Q_set ∧ b ∈ Q_set}
[real_def] Definition
⊢ ∀x.
real x =
if (x = NegInf) ∨ (x = PosInf) then 0 else @r. x = Normal r
[ADD_IN_Q] Theorem
⊢ ∀x y. x ∈ Q_set ∧ y ∈ Q_set ⇒ x + y ∈ Q_set
[CEILING_LBOUND] Theorem
⊢ ∀x. Normal x ≤ &ceiling (Normal x)
[CEILING_UBOUND] Theorem
⊢ ∀x. 0 ≤ x ⇒ &ceiling (Normal x) < Normal x + 1
[CMUL_IN_Q] Theorem
⊢ ∀z x. x ∈ Q_set ⇒ &z * x ∈ Q_set ∧ -&z * x ∈ Q_set
[COUNTABLE_ENUM_Q] Theorem
⊢ ∀c. countable c ⇔ (c = ∅) ∨ ∃f. c = IMAGE f Q_set
[COUNTABLE_RATIONAL_INTERVALS] Theorem
⊢ countable rational_intervals
[CROSS_COUNTABLE] Theorem
⊢ ∀s. countable s ∧ countable t ⇒ countable (s × t)
[CROSS_COUNTABLE_LEMMA1] Theorem
⊢ ∀s. countable s ∧ FINITE s ∧ countable t ⇒ countable (s × t)
[CROSS_COUNTABLE_LEMMA2] Theorem
⊢ ∀s. countable s ∧ countable t ∧ FINITE t ⇒ countable (s × t)
[CROSS_COUNTABLE_UNIV] Theorem
⊢ countable (𝕌(:num) × 𝕌(:num))
[DIV_IN_Q] Theorem
⊢ ∀x y. x ∈ Q_set ∧ y ∈ Q_set ∧ y ≠ 0 ⇒ x / y ∈ Q_set
[EXTREAL_ARCH] Theorem
⊢ ∀x. 0 < x ⇒ ∀y. y ≠ PosInf ⇒ ∃n. y < &n * x
[EXTREAL_ARCH_POW] Theorem
⊢ ∀x. x ≠ PosInf ⇒ ∃n. x < 2 pow n
[EXTREAL_ARCH_POW_INV] Theorem
⊢ ∀e. 0 < e ⇒ ∃n. Normal ((1 / 2) pow n) < e
[EXTREAL_EQ_LADD] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ⇒ ((x + y = x + z) ⇔ (y = z))
[EXTREAL_SUM_IMAGE_0] Theorem
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ (f x = 0)) ⇒ (SIGMA f s = 0)
[EXTREAL_SUM_IMAGE_ADD] Theorem
⊢ ∀s.
FINITE s ⇒
∀f f'. SIGMA (λx. f x + f' x) s = SIGMA f s + SIGMA f' s
[EXTREAL_SUM_IMAGE_CMUL] Theorem
⊢ ∀s.
FINITE s ⇒
∀f c.
0 ≤ c ∨ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒
(SIGMA (λx. Normal c * f x) s = Normal c * SIGMA f s)
[EXTREAL_SUM_IMAGE_CMUL2] Theorem
⊢ ∀s f c.
FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ NegInf) ⇒
(SIGMA (λx. Normal c * f x) s = Normal c * SIGMA f s)
[EXTREAL_SUM_IMAGE_COUNT] Theorem
⊢ ∀f.
(SIGMA f (count 2) = f 0 + f 1) ∧
(SIGMA f (count 3) = f 0 + f 1 + f 2) ∧
(SIGMA f (count 4) = f 0 + f 1 + f 2 + f 3) ∧
(SIGMA f (count 5) = f 0 + f 1 + f 2 + f 3 + f 4)
[EXTREAL_SUM_IMAGE_CROSS_SYM] Theorem
⊢ ∀f s1 s2.
FINITE s1 ∧ FINITE s2 ⇒
(SIGMA (λ(x,y). f (x,y)) (s1 × s2) =
SIGMA (λ(y,x). f (x,y)) (s2 × s1))
[EXTREAL_SUM_IMAGE_DISJOINT_UNION] Theorem
⊢ ∀s s'.
FINITE s ∧ FINITE s' ∧ DISJOINT s s' ⇒
∀f. SIGMA f (s ∪ s') = SIGMA f s + SIGMA f s'
[EXTREAL_SUM_IMAGE_EQ] Theorem
⊢ ∀s.
FINITE s ⇒
∀f f'. (∀x. x ∈ s ⇒ (f x = f' x)) ⇒ (SIGMA f s = SIGMA f' s)
[EXTREAL_SUM_IMAGE_EQ_CARD] Theorem
⊢ ∀s. FINITE s ⇒ (SIGMA (λx. if x ∈ s then 1 else 0) s = &CARD s)
[EXTREAL_SUM_IMAGE_EXTREAL_SUM_IMAGE] Theorem
⊢ ∀s s' f.
FINITE s ∧ FINITE s' ⇒
(SIGMA (λx. SIGMA (f x) s') s =
SIGMA (λx. f (FST x) (SND x)) (s × s'))
[EXTREAL_SUM_IMAGE_FINITE_CONST] Theorem
⊢ ∀P. FINITE P ⇒ ∀f x. (∀y. f y = x) ⇒ (SIGMA f P = &CARD P * x)
[EXTREAL_SUM_IMAGE_FINITE_SAME] Theorem
⊢ ∀s.
FINITE s ⇒
∀f p.
p ∈ s ∧ (∀q. q ∈ s ⇒ (f p = f q)) ⇒
(SIGMA f s = &CARD s * f p)
[EXTREAL_SUM_IMAGE_IF_ELIM] Theorem
⊢ ∀s P f.
FINITE s ∧ (∀x. x ∈ s ⇒ P x) ⇒
(SIGMA (λx. if P x then f x else 0) s = SIGMA f s)
[EXTREAL_SUM_IMAGE_IMAGE] Theorem
⊢ ∀s.
FINITE s ⇒
∀f'.
INJ f' s (IMAGE f' s) ⇒
∀f. SIGMA f (IMAGE f' s) = SIGMA (f ∘ f') s
[EXTREAL_SUM_IMAGE_INTER_ELIM] Theorem
⊢ ∀s.
FINITE s ⇒
∀f s'.
(∀x. x ∉ s' ⇒ (f x = 0)) ⇒ (SIGMA f (s ∩ s') = SIGMA f s)
[EXTREAL_SUM_IMAGE_INTER_NONZERO] Theorem
⊢ ∀s. FINITE s ⇒ ∀f. SIGMA f (s ∩ (λp. f p ≠ 0)) = SIGMA f s
[EXTREAL_SUM_IMAGE_INV_CARD_EQ_1] Theorem
⊢ ∀s.
s ≠ ∅ ∧ FINITE s ⇒
(SIGMA (λx. if x ∈ s then inv (&CARD s) else 0) s = 1)
[EXTREAL_SUM_IMAGE_IN_IF] Theorem
⊢ ∀s.
FINITE s ⇒
∀f. SIGMA f s = SIGMA (λx. if x ∈ s then f x else 0) s
[EXTREAL_SUM_IMAGE_IN_IF_ALT] Theorem
⊢ ∀s f z.
FINITE s ⇒ (SIGMA f s = SIGMA (λx. if x ∈ s then f x else z) s)
[EXTREAL_SUM_IMAGE_MONO] Theorem
⊢ ∀s.
FINITE s ⇒
∀f f'. (∀x. x ∈ s ⇒ f x ≤ f' x) ⇒ SIGMA f s ≤ SIGMA f' s
[EXTREAL_SUM_IMAGE_MONO_SET] Theorem
⊢ ∀f s t.
FINITE s ∧ FINITE t ∧ s ⊆ t ∧ (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒
SIGMA f s ≤ SIGMA f t
[EXTREAL_SUM_IMAGE_NORMAL] Theorem
⊢ ∀f s. FINITE s ⇒ (SIGMA (λx. Normal (f x)) s = Normal (SIGMA f s))
[EXTREAL_SUM_IMAGE_NOT_INFTY] Theorem
⊢ ∀f s.
(FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ NegInf) ⇒ SIGMA f s ≠ NegInf) ∧
(FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ PosInf) ⇒ SIGMA f s ≠ PosInf)
[EXTREAL_SUM_IMAGE_NOT_NEG_INF] Theorem
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ NegInf) ⇒ SIGMA f s ≠ NegInf
[EXTREAL_SUM_IMAGE_NOT_POS_INF] Theorem
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ f x ≠ PosInf) ⇒ SIGMA f s ≠ PosInf
[EXTREAL_SUM_IMAGE_POS] Theorem
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ SIGMA f s
[EXTREAL_SUM_IMAGE_POS_MEM_LE] Theorem
⊢ ∀f s.
FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ ∀x. x ∈ s ⇒ f x ≤ SIGMA f s
[EXTREAL_SUM_IMAGE_SING] Theorem
⊢ ∀f e. SIGMA f {e} = f e
[EXTREAL_SUM_IMAGE_SPOS] Theorem
⊢ ∀f s. FINITE s ∧ s ≠ ∅ ∧ (∀x. x ∈ s ⇒ 0 < f x) ⇒ 0 < SIGMA f s
[EXTREAL_SUM_IMAGE_SUB] Theorem
⊢ ∀s.
FINITE s ⇒
∀f f'.
(∀x. x ∈ s ⇒ f' x ≠ NegInf) ∨ (∀x. x ∈ s ⇒ f' x ≠ PosInf) ⇒
(SIGMA (λx. f x − f' x) s = SIGMA f s − SIGMA f' s)
[EXTREAL_SUM_IMAGE_THM] Theorem
⊢ ∀f.
(SIGMA f ∅ = 0) ∧
∀e s.
FINITE s ⇒
(SIGMA f (e INSERT s) = f e + SIGMA f (s DELETE e))
[EXTREAL_SUM_IMAGE_ZERO] Theorem
⊢ ∀s. FINITE s ⇒ (SIGMA (λx. 0) s = 0)
[EXTREAL_SUM_IMAGE_ZERO_DIFF] Theorem
⊢ ∀s.
FINITE s ⇒
∀f t.
(∀x. x ∈ t ⇒ (f x = 0)) ⇒ (SIGMA f s = SIGMA f (s DIFF t))
[INV_IN_Q] Theorem
⊢ ∀x. x ∈ Q_set ∧ x ≠ 0 ⇒ 1 / x ∈ Q_set
[LOGR_MONO_LE] Theorem
⊢ ∀x y b. 0 < x ∧ 0 < y ∧ 1 < b ⇒ (logr b x ≤ logr b y ⇔ x ≤ y)
[LOGR_MONO_LE_IMP] Theorem
⊢ ∀x y b. 0 < x ∧ x ≤ y ∧ 1 ≤ b ⇒ logr b x ≤ logr b y
[MUL_IN_Q] Theorem
⊢ ∀x y. x ∈ Q_set ∧ y ∈ Q_set ⇒ x * y ∈ Q_set
[NUM_IN_Q] Theorem
⊢ ∀n. &n ∈ Q_set ∧ -&n ∈ Q_set
[OPP_IN_Q] Theorem
⊢ ∀x. x ∈ Q_set ⇒ -x ∈ Q_set
[POW_NEG_ODD] Theorem
⊢ ∀x. x < 0 ⇒ (x pow n < 0 ⇔ ODD n)
[POW_POS_EVEN] Theorem
⊢ ∀x. x < 0 ⇒ (0 < x pow n ⇔ EVEN n)
[Q_COUNTABLE] Theorem
⊢ countable Q_set
[Q_DENSE_IN_R] Theorem
⊢ ∀x y. x < y ⇒ ∃r. r ∈ Q_set ∧ x < r ∧ r < y
[Q_DENSE_IN_R_LEMMA] Theorem
⊢ ∀x y. 0 ≤ x ∧ x < y ⇒ ∃r. r ∈ Q_set ∧ x < r ∧ r < y
[Q_INFINITE] Theorem
⊢ INFINITE Q_set
[Q_not_infty] Theorem
⊢ ∀x. x ∈ Q_set ⇒ ∃y. x = Normal y
[REAL_ARCH_POW] Theorem
⊢ ∀x. ∃n. x < 2 pow n
[REAL_LE_MUL_EPSILON] Theorem
⊢ ∀x y. (∀z. 0 < z ∧ z < 1 ⇒ z * x ≤ y) ⇒ x ≤ y
[REAL_LE_RDIV_EQ_NEG] Theorem
⊢ ∀x y z. z < 0 ⇒ (y / z ≤ x ⇔ x * z ≤ y)
[REAL_LT_LMUL_0_NEG] Theorem
⊢ ∀x y. 0 < x * y ∧ x < 0 ⇒ y < 0
[REAL_LT_LMUL_NEG_0] Theorem
⊢ ∀x y. x * y < 0 ∧ 0 < x ⇒ y < 0
[REAL_LT_LMUL_NEG_0_NEG] Theorem
⊢ ∀x y. x * y < 0 ∧ x < 0 ⇒ 0 < y
[REAL_LT_RDIV_EQ_NEG] Theorem
⊢ ∀x y z. z < 0 ⇒ (y / z < x ⇔ x * z < y)
[REAL_LT_RMUL_0_NEG] Theorem
⊢ ∀x y. 0 < x * y ∧ y < 0 ⇒ x < 0
[REAL_LT_RMUL_NEG_0] Theorem
⊢ ∀x y. x * y < 0 ∧ 0 < y ⇒ x < 0
[REAL_LT_RMUL_NEG_0_NEG] Theorem
⊢ ∀x y. x * y < 0 ∧ y < 0 ⇒ 0 < x
[SIMP_EXTREAL_ARCH] Theorem
⊢ ∀x. x ≠ PosInf ⇒ ∃n. x ≤ &n
[SIMP_REAL_ARCH] Theorem
⊢ ∀x. ∃n. x ≤ &n
[SIMP_REAL_ARCH_NEG] Theorem
⊢ ∀x. ∃n. -&n ≤ x
[SUB_IN_Q] Theorem
⊢ ∀x y. x ∈ Q_set ∧ y ∈ Q_set ⇒ x − y ∈ Q_set
[abs_bounds] Theorem
⊢ ∀x k. abs x ≤ k ⇔ -k ≤ x ∧ x ≤ k
[abs_bounds_lt] Theorem
⊢ ∀x k. abs x < k ⇔ -k < x ∧ x < k
[abs_pos] Theorem
⊢ ∀x. 0 ≤ abs x
[abs_refl] Theorem
⊢ ∀x. (abs x = x) ⇔ 0 ≤ x
[add2_sub2] Theorem
⊢ ∀a b c d.
b ≠ PosInf ∧ d ≠ PosInf ∨ b ≠ NegInf ∧ d ≠ NegInf ⇒
(a − b + (c − d) = a + c − (b + d))
[add_assoc] Theorem
⊢ ∀x y z. x + (y + z) = x + y + z
[add_comm] Theorem
⊢ ∀x y. x + y = y + x
[add_infty] Theorem
⊢ (∀x. (x + PosInf = PosInf) ∧ (PosInf + x = PosInf)) ∧
∀x. x ≠ PosInf ⇒ (x + NegInf = NegInf) ∧ (NegInf + x = NegInf)
[add_ldistrib] Theorem
⊢ ∀x y z.
0 ≤ y ∧ 0 ≤ z ∨ y ≤ 0 ∧ z ≤ 0 ⇒ (x * (y + z) = x * y + x * z)
[add_ldistrib_neg] Theorem
⊢ ∀x y z. y ≤ 0 ∧ z ≤ 0 ⇒ (x * (y + z) = x * y + x * z)
[add_ldistrib_normal] Theorem
⊢ ∀x y z.
y ≠ PosInf ∧ z ≠ PosInf ∨ y ≠ NegInf ∧ z ≠ NegInf ⇒
(Normal x * (y + z) = Normal x * y + Normal x * z)
[add_ldistrib_normal2] Theorem
⊢ ∀x y z. 0 ≤ x ⇒ (Normal x * (y + z) = Normal x * y + Normal x * z)
[add_ldistrib_pos] Theorem
⊢ ∀x y z. 0 ≤ y ∧ 0 ≤ z ⇒ (x * (y + z) = x * y + x * z)
[add_lzero] Theorem
⊢ ∀x. 0 + x = x
[add_not_infty] Theorem
⊢ ∀x y.
(x ≠ NegInf ∧ y ≠ NegInf ⇒ x + y ≠ NegInf) ∧
(x ≠ PosInf ∧ y ≠ PosInf ⇒ x + y ≠ PosInf)
[add_pow2] Theorem
⊢ ∀x y. (x + y) pow 2 = x pow 2 + y pow 2 + 2 * x * y
[add_rdistrib] Theorem
⊢ ∀x y z.
0 ≤ y ∧ 0 ≤ z ∨ y ≤ 0 ∧ z ≤ 0 ⇒ ((y + z) * x = y * x + z * x)
[add_rdistrib_normal] Theorem
⊢ ∀x y z.
y ≠ PosInf ∧ z ≠ PosInf ∨ y ≠ NegInf ∧ z ≠ NegInf ⇒
((y + z) * Normal x = y * Normal x + z * Normal x)
[add_rdistrib_normal2] Theorem
⊢ ∀x y z. 0 ≤ x ⇒ ((y + z) * Normal x = y * Normal x + z * Normal x)
[add_rzero] Theorem
⊢ ∀x. x + 0 = x
[add_sub] Theorem
⊢ ∀x y. y ≠ NegInf ∧ y ≠ PosInf ⇒ (x + y − y = x)
[add_sub2] Theorem
⊢ ∀x y. y ≠ NegInf ∧ y ≠ PosInf ⇒ (y + x − y = x)
[datatype_extreal] Theorem
⊢ DATATYPE (extreal NegInf PosInf Normal)
[div_add] Theorem
⊢ ∀x y z.
x ≠ NegInf ∧ y ≠ NegInf ∧ z ≠ 0 ⇒ (x / z + y / z = (x + y) / z)
[div_one] Theorem
⊢ ∀x. x / 1 = x
[entire] Theorem
⊢ ∀x y. (x * y = 0) ⇔ (x = 0) ∨ (y = 0)
[eq_add_sub_switch] Theorem
⊢ ∀a b c d.
b ≠ NegInf ∧ b ≠ PosInf ∧ c ≠ NegInf ∧ c ≠ PosInf ⇒
((a + b = c + d) ⇔ (a − c = d − b))
[eq_neg] Theorem
⊢ ∀x y. (-x = -y) ⇔ (x = y)
[eq_sub_ladd] Theorem
⊢ ∀x y z. z ≠ NegInf ∧ z ≠ PosInf ⇒ ((x = y − z) ⇔ (x + z = y))
[eq_sub_ladd_normal] Theorem
⊢ ∀x y z. (x = y − Normal z) ⇔ (x + Normal z = y)
[eq_sub_radd] Theorem
⊢ ∀x y z. y ≠ NegInf ∧ y ≠ PosInf ⇒ ((x − y = z) ⇔ (x = z + y))
[eq_sub_switch] Theorem
⊢ ∀x y z. (x = Normal z − y) ⇔ (y = Normal z − x)
[ext_mono_decreasing_suc] Theorem
⊢ ∀f. mono_decreasing f ⇔ ∀n. f (SUC n) ≤ f n
[ext_mono_increasing_suc] Theorem
⊢ ∀f. mono_increasing f ⇔ ∀n. f n ≤ f (SUC n)
[ext_suminf_add] Theorem
⊢ ∀f g.
(∀n. 0 ≤ f n ∧ 0 ≤ g n) ⇒
(suminf (λn. f n + g n) = suminf f + suminf g)
[ext_suminf_cmul] Theorem
⊢ ∀f c. 0 ≤ c ∧ (∀n. 0 ≤ f n) ⇒ (suminf (λn. c * f n) = c * suminf f)
[ext_suminf_cmul_alt] Theorem
⊢ ∀f c.
0 ≤ c ∧ ((∀n. f n ≠ NegInf) ∨ ∀n. f n ≠ PosInf) ⇒
(suminf (λn. Normal c * f n) = Normal c * suminf f)
[ext_suminf_lt_infty] Theorem
⊢ ∀f. (∀n. 0 ≤ f n) ∧ suminf f ≠ PosInf ⇒ ∀n. f n < PosInf
[ext_suminf_mono] Theorem
⊢ ∀f g. (∀n. g n ≠ NegInf ∧ g n ≤ f n) ⇒ suminf g ≤ suminf f
[ext_suminf_sub] Theorem
⊢ ∀f g.
(∀n. 0 ≤ g n ∧ g n ≤ f n) ∧ suminf f ≠ PosInf ⇒
(suminf (λi. f i − g i) = suminf f − suminf g)
[ext_suminf_sum] Theorem
⊢ ∀f n.
(∀n. 0 ≤ f n) ∧ (∀m. n ≤ m ⇒ (f m = 0)) ⇒
(suminf f = SIGMA f (count n))
[ext_suminf_suminf] Theorem
⊢ ∀r.
(∀n. 0 ≤ r n) ∧ suminf (λn. Normal (r n)) ≠ PosInf ⇒
(suminf (λn. Normal (r n)) = Normal (suminf r))
[extreal_11] Theorem
⊢ ∀a a'. (Normal a = Normal a') ⇔ (a = a')
[extreal_Axiom] Theorem
⊢ ∀f0 f1 f2.
∃fn.
(fn NegInf = f0) ∧ (fn PosInf = f1) ∧
∀a. fn (Normal a) = f2 a
[extreal_abs_def] Theorem
⊢ (abs (Normal x) = Normal (abs x)) ∧ (abs NegInf = PosInf) ∧
(abs PosInf = PosInf)
[extreal_abs_ind] Theorem
⊢ ∀P. (∀x. P (Normal x)) ∧ P NegInf ∧ P PosInf ⇒ ∀v. P v
[extreal_add_def] Theorem
⊢ (Normal x + Normal y = Normal (x + y)) ∧ (PosInf + a = PosInf) ∧
(NegInf + PosInf = PosInf) ∧ (Normal v2 + PosInf = PosInf) ∧
(NegInf + NegInf = NegInf) ∧ (NegInf + Normal v5 = NegInf) ∧
(Normal v3 + NegInf = NegInf)
[extreal_add_ind] Theorem
⊢ ∀P.
(∀x y. P (Normal x) (Normal y)) ∧ (∀a. P PosInf a) ∧
P NegInf PosInf ∧ (∀v2. P (Normal v2) PosInf) ∧
P NegInf NegInf ∧ (∀v5. P NegInf (Normal v5)) ∧
(∀v3. P (Normal v3) NegInf) ⇒
∀v v1. P v v1
[extreal_case_cong] Theorem
⊢ ∀M M' v v1 f.
(M = M') ∧ ((M' = NegInf) ⇒ (v = v')) ∧
((M' = PosInf) ⇒ (v1 = v1')) ∧
(∀a. (M' = Normal a) ⇒ (f a = f' a)) ⇒
(extreal_CASE M v v1 f = extreal_CASE M' v' v1' f')
[extreal_case_eq] Theorem
⊢ (extreal_CASE x v v1 f = v') ⇔
(x = NegInf) ∧ (v = v') ∨ (x = PosInf) ∧ (v1 = v') ∨
∃r. (x = Normal r) ∧ (f r = v')
[extreal_cases] Theorem
⊢ ∀x. (x = NegInf) ∨ (x = PosInf) ∨ ∃r. x = Normal r
[extreal_distinct] Theorem
⊢ NegInf ≠ PosInf ∧ (∀a. NegInf ≠ Normal a) ∧ ∀a. PosInf ≠ Normal a
[extreal_div_eq] Theorem
⊢ ∀x y. Normal x / Normal y = Normal (x / y)
[extreal_eq_zero] Theorem
⊢ ∀x. (Normal x = 0) ⇔ (x = 0)
[extreal_induction] Theorem
⊢ ∀P. P NegInf ∧ P PosInf ∧ (∀r. P (Normal r)) ⇒ ∀e. P e
[extreal_le_def] Theorem
⊢ (Normal x ≤ Normal y ⇔ x ≤ y) ∧ (NegInf ≤ a ⇔ T) ∧
(PosInf ≤ PosInf ⇔ T) ∧ (Normal v2 ≤ PosInf ⇔ T) ∧
(PosInf ≤ NegInf ⇔ F) ∧ (Normal v3 ≤ NegInf ⇔ F) ∧
(PosInf ≤ Normal v5 ⇔ F)
[extreal_le_ind] Theorem
⊢ ∀P.
(∀x y. P (Normal x) (Normal y)) ∧ (∀a. P NegInf a) ∧
P PosInf PosInf ∧ (∀v2. P (Normal v2) PosInf) ∧
P PosInf NegInf ∧ (∀v3. P (Normal v3) NegInf) ∧
(∀v5. P PosInf (Normal v5)) ⇒
∀v v1. P v v1
[extreal_lt_eq] Theorem
⊢ ∀x y. Normal x < Normal y ⇔ x < y
[extreal_mul_def] Theorem
⊢ (NegInf * NegInf = PosInf) ∧ (NegInf * PosInf = NegInf) ∧
(PosInf * NegInf = NegInf) ∧ (PosInf * PosInf = PosInf) ∧
(Normal x * NegInf =
if x = 0 then Normal 0 else if 0 < x then NegInf else PosInf) ∧
(NegInf * Normal y =
if y = 0 then Normal 0 else if 0 < y then NegInf else PosInf) ∧
(Normal x * PosInf =
if x = 0 then Normal 0 else if 0 < x then PosInf else NegInf) ∧
(PosInf * Normal y =
if y = 0 then Normal 0 else if 0 < y then PosInf else NegInf) ∧
(Normal x * Normal y = Normal (x * y))
[extreal_mul_ind] Theorem
⊢ ∀P.
P NegInf NegInf ∧ P NegInf PosInf ∧ P PosInf NegInf ∧
P PosInf PosInf ∧ (∀x. P (Normal x) NegInf) ∧
(∀y. P NegInf (Normal y)) ∧ (∀x. P (Normal x) PosInf) ∧
(∀y. P PosInf (Normal y)) ∧ (∀x y. P (Normal x) (Normal y)) ⇒
∀v v1. P v v1
[extreal_nchotomy] Theorem
⊢ ∀ee. (ee = NegInf) ∨ (ee = PosInf) ∨ ∃r. ee = Normal r
[extreal_not_infty] Theorem
⊢ ∀x. Normal x ≠ NegInf ∧ Normal x ≠ PosInf
[extreal_sub_add] Theorem
⊢ ∀x y. x − y = x + -y
[extreal_sub_def] Theorem
⊢ (Normal x − Normal y = Normal (x − y)) ∧ (PosInf − a = PosInf) ∧
(NegInf − PosInf = NegInf) ∧ (Normal v2 − PosInf = NegInf) ∧
(NegInf − NegInf = PosInf) ∧ (NegInf − Normal v5 = NegInf) ∧
(Normal v3 − NegInf = PosInf)
[extreal_sub_ind] Theorem
⊢ ∀P.
(∀x y. P (Normal x) (Normal y)) ∧ (∀a. P PosInf a) ∧
P NegInf PosInf ∧ (∀v2. P (Normal v2) PosInf) ∧
P NegInf NegInf ∧ (∀v5. P NegInf (Normal v5)) ∧
(∀v3. P (Normal v3) NegInf) ⇒
∀v v1. P v v1
[fourth_cancel] Theorem
⊢ 4 * (1 / 4) = 1
[half_between] Theorem
⊢ (0 < 1 / 2 ∧ 1 / 2 < 1) ∧ 0 ≤ 1 / 2 ∧ 1 / 2 ≤ 1
[half_cancel] Theorem
⊢ 2 * (1 / 2) = 1
[inf_cminus] Theorem
⊢ ∀f c.
Normal c − inf (IMAGE f 𝕌(:α)) =
sup (IMAGE (λn. Normal c − f n) 𝕌(:α))
[inf_const] Theorem
⊢ ∀x. inf (λy. y = x) = x
[inf_const_alt] Theorem
⊢ ∀p z. (∃x. p x) ∧ (∀x. p x ⇒ (x = z)) ⇒ (inf p = z)
[inf_const_over_set] Theorem
⊢ ∀s k. s ≠ ∅ ⇒ (inf (IMAGE (λx. k) s) = k)
[inf_eq] Theorem
⊢ ∀p x.
(inf p = x) ⇔ (∀y. p y ⇒ x ≤ y) ∧ ∀y. (∀z. p z ⇒ y ≤ z) ⇒ y ≤ x
[inf_le] Theorem
⊢ ∀p x. inf p ≤ x ⇔ ∀y. (∀z. p z ⇒ y ≤ z) ⇒ y ≤ x
[inf_le_imp] Theorem
⊢ ∀p x. p x ⇒ inf p ≤ x
[inf_lt_infty] Theorem
⊢ ∀p. NegInf < inf p ⇒ ∀x. p x ⇒ NegInf < x
[inf_min] Theorem
⊢ ∀p z. p z ∧ (∀x. p x ⇒ z ≤ x) ⇒ (inf p = z)
[inf_seq] Theorem
⊢ ∀f l.
mono_decreasing f ⇒
(f --> l ⇔ (inf (IMAGE (λn. Normal (f n)) 𝕌(:num)) = Normal l))
[inf_suc] Theorem
⊢ ∀f.
(∀m n. m ≤ n ⇒ f n ≤ f m) ⇒
(inf (IMAGE (λn. f (SUC n)) 𝕌(:num)) = inf (IMAGE f 𝕌(:num)))
[inv_1over] Theorem
⊢ ∀x. inv x = 1 / x
[inv_one] Theorem
⊢ inv 1 = 1
[inv_pos] Theorem
⊢ ∀x. 0 < x ∧ x ≠ PosInf ⇒ 0 < 1 / x
[le_01] Theorem
⊢ 0 ≤ 1
[le_02] Theorem
⊢ 0 ≤ 2
[le_add] Theorem
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x + y
[le_add2] Theorem
⊢ ∀w x y z. w ≤ x ∧ y ≤ z ⇒ w + y ≤ x + z
[le_addr] Theorem
⊢ ∀x y. x ≠ NegInf ∧ x ≠ PosInf ⇒ (x ≤ x + y ⇔ 0 ≤ y)
[le_addr_imp] Theorem
⊢ ∀x y. 0 ≤ y ⇒ x ≤ x + y
[le_antisym] Theorem
⊢ ∀x y. x ≤ y ∧ y ≤ x ⇔ (x = y)
[le_epsilon] Theorem
⊢ ∀x y. (∀e. 0 < e ∧ e ≠ PosInf ⇒ x ≤ y + e) ⇒ x ≤ y
[le_inf] Theorem
⊢ ∀p x. x ≤ inf p ⇔ ∀y. p y ⇒ x ≤ y
[le_infty] Theorem
⊢ (∀x. NegInf ≤ x ∧ x ≤ PosInf) ∧ (∀x. x ≤ NegInf ⇔ (x = NegInf)) ∧
∀x. PosInf ≤ x ⇔ (x = PosInf)
[le_inv] Theorem
⊢ ∀x. 0 ≤ x ⇒ 0 ≤ inv x
[le_ladd] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ⇒ (x + y ≤ x + z ⇔ y ≤ z)
[le_ladd_imp] Theorem
⊢ ∀x y z. y ≤ z ⇒ x + y ≤ x + z
[le_ldiv] Theorem
⊢ ∀x y z. 0 < x ⇒ (y ≤ z * Normal x ⇔ y / Normal x ≤ z)
[le_lmul_imp] Theorem
⊢ ∀x y z. 0 ≤ z ∧ x ≤ y ⇒ z * x ≤ z * y
[le_lneg] Theorem
⊢ ∀x y. -x ≤ y ⇔ 0 ≤ x + y
[le_lsub_imp] Theorem
⊢ ∀x y z. y ≤ z ⇒ x − z ≤ x − y
[le_lt] Theorem
⊢ ∀x y. x ≤ y ⇔ x < y ∨ (x = y)
[le_max] Theorem
⊢ ∀z x y. z ≤ max x y ⇔ z ≤ x ∨ z ≤ y
[le_max1] Theorem
⊢ ∀x y. x ≤ max x y
[le_max2] Theorem
⊢ ∀x y. y ≤ max x y
[le_min] Theorem
⊢ ∀z x y. z ≤ min x y ⇔ z ≤ x ∧ z ≤ y
[le_mul] Theorem
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x * y
[le_mul_epsilon] Theorem
⊢ ∀x y. (∀z. 0 ≤ z ∧ z < 1 ⇒ z * x ≤ y) ⇒ x ≤ y
[le_mul_neg] Theorem
⊢ ∀x y. x ≤ 0 ∧ y ≤ 0 ⇒ 0 ≤ x * y
[le_neg] Theorem
⊢ ∀x y. -x ≤ -y ⇔ y ≤ x
[le_num] Theorem
⊢ ∀n. 0 ≤ &n
[le_pow2] Theorem
⊢ ∀x. 0 ≤ x pow 2
[le_radd] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ⇒ (y + x ≤ z + x ⇔ y ≤ z)
[le_radd_imp] Theorem
⊢ ∀x y z. y ≤ z ⇒ y + x ≤ z + x
[le_rdiv] Theorem
⊢ ∀x y z. 0 < x ⇒ (y * Normal x ≤ z ⇔ y ≤ z / Normal x)
[le_refl] Theorem
⊢ ∀x. x ≤ x
[le_rmul_imp] Theorem
⊢ ∀x y z. 0 < z ∧ x ≤ y ⇒ x * z ≤ y * z
[le_sub_eq] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ⇒ (y ≤ z − x ⇔ y + x ≤ z)
[le_sub_eq2] Theorem
⊢ ∀x y z.
z ≠ NegInf ∧ z ≠ PosInf ∧ x ≠ NegInf ∧ y ≠ NegInf ⇒
(y ≤ z − x ⇔ y + x ≤ z)
[le_sub_imp] Theorem
⊢ ∀x y z. y + x ≤ z ⇒ y ≤ z − x
[le_sup] Theorem
⊢ ∀p x. x ≤ sup p ⇔ ∀y. (∀z. p z ⇒ z ≤ y) ⇒ x ≤ y
[le_sup_imp] Theorem
⊢ ∀p x. p x ⇒ x ≤ sup p
[le_total] Theorem
⊢ ∀x y. x ≤ y ∨ y ≤ x
[le_trans] Theorem
⊢ ∀x y z. x ≤ y ∧ y ≤ z ⇒ x ≤ z
[let_add] Theorem
⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 < x + y
[let_add2] Theorem
⊢ ∀w x y z. w ≠ NegInf ∧ w ≠ PosInf ∧ w ≤ x ∧ y < z ⇒ w + y < x + z
[let_add2_alt] Theorem
⊢ ∀w x y z. x ≠ NegInf ∧ x ≠ PosInf ∧ w ≤ x ∧ y < z ⇒ w + y < x + z
[let_mul] Theorem
⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
[let_trans] Theorem
⊢ ∀x y z. x ≤ y ∧ y < z ⇒ x < z
[linv_uniq] Theorem
⊢ ∀x y. (x * y = 1) ⇒ (x = inv y)
[logr_not_infty] Theorem
⊢ ∀x b.
x ≠ NegInf ∧ x ≠ PosInf ⇒ logr b x ≠ NegInf ∧ logr b x ≠ PosInf
[lt_01] Theorem
⊢ 0 < 1
[lt_02] Theorem
⊢ 0 < 2
[lt_add] Theorem
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x + y
[lt_add2] Theorem
⊢ ∀w x y z. w < x ∧ y < z ⇒ w + y < x + z
[lt_addl] Theorem
⊢ ∀x y. y ≠ NegInf ∧ y ≠ PosInf ⇒ (y < x + y ⇔ 0 < x)
[lt_antisym] Theorem
⊢ ∀x y. ¬(x < y ∧ y < x)
[lt_imp_le] Theorem
⊢ ∀x y. x < y ⇒ x ≤ y
[lt_imp_ne] Theorem
⊢ ∀x y. x < y ⇒ x ≠ y
[lt_infty] Theorem
⊢ ∀x y.
NegInf < Normal y ∧ Normal y < PosInf ∧ NegInf < PosInf ∧
¬(x < NegInf) ∧ ¬(PosInf < x) ∧ (x ≠ PosInf ⇔ x < PosInf) ∧
(x ≠ NegInf ⇔ NegInf < x)
[lt_ladd] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ⇒ (x + y < x + z ⇔ y < z)
[lt_ldiv] Theorem
⊢ ∀x y z. 0 < z ⇒ (x / Normal z < y ⇔ x < y * Normal z)
[lt_le] Theorem
⊢ ∀x y. x < y ⇔ x ≤ y ∧ x ≠ y
[lt_lmul] Theorem
⊢ ∀x y z. 0 < x ∧ x ≠ PosInf ⇒ (x * y < x * z ⇔ y < z)
[lt_mul] Theorem
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ 0 < x * y
[lt_mul2] Theorem
⊢ ∀x1 x2 y1 y2.
0 ≤ x1 ∧ 0 ≤ y1 ∧ x1 ≠ PosInf ∧ y1 ≠ PosInf ∧ x1 < x2 ∧ y1 < y2 ⇒
x1 * y1 < x2 * y2
[lt_mul_neg] Theorem
⊢ ∀x y. x < 0 ∧ y < 0 ⇒ 0 < x * y
[lt_neg] Theorem
⊢ ∀x y. -x < -y ⇔ y < x
[lt_radd] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ⇒ (y + x < z + x ⇔ y < z)
[lt_rdiv] Theorem
⊢ ∀x y z. 0 < z ⇒ (x < y / Normal z ⇔ x * Normal z < y)
[lt_rdiv_neg] Theorem
⊢ ∀x y z. z < 0 ⇒ (y / Normal z < x ⇔ x * Normal z < y)
[lt_refl] Theorem
⊢ ∀x. ¬(x < x)
[lt_rmul] Theorem
⊢ ∀x y z. 0 < z ∧ z ≠ PosInf ⇒ (x * z < y * z ⇔ x < y)
[lt_sub] Theorem
⊢ ∀x y z. z ≠ NegInf ∧ z ≠ PosInf ⇒ (y + x < z ⇔ y < z − x)
[lt_sub_imp] Theorem
⊢ ∀x y z. y + x < z ⇒ y < z − x
[lt_total] Theorem
⊢ ∀x y. (x = y) ∨ x < y ∨ y < x
[lt_trans] Theorem
⊢ ∀x y z. x < y ∧ y < z ⇒ x < z
[lte_add] Theorem
⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 < x + y
[lte_mul] Theorem
⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
[lte_trans] Theorem
⊢ ∀x y z. x < y ∧ y ≤ z ⇒ x < z
[max_comm] Theorem
⊢ ∀x y. max x y = max y x
[max_infty] Theorem
⊢ ∀x.
(max x PosInf = PosInf) ∧ (max PosInf x = PosInf) ∧
(max NegInf x = x) ∧ (max x NegInf = x)
[max_le] Theorem
⊢ ∀z x y. max x y ≤ z ⇔ x ≤ z ∧ y ≤ z
[max_le2_imp] Theorem
⊢ ∀x1 x2 y1 y2. x1 ≤ y1 ∧ x2 ≤ y2 ⇒ max x1 x2 ≤ max y1 y2
[max_refl] Theorem
⊢ ∀x. max x x = x
[min_comm] Theorem
⊢ ∀x y. min x y = min y x
[min_infty] Theorem
⊢ ∀x.
(min x PosInf = x) ∧ (min PosInf x = x) ∧
(min NegInf x = NegInf) ∧ (min x NegInf = NegInf)
[min_le] Theorem
⊢ ∀z x y. min x y ≤ z ⇔ x ≤ z ∨ y ≤ z
[min_le1] Theorem
⊢ ∀x y. min x y ≤ x
[min_le2] Theorem
⊢ ∀x y. min x y ≤ y
[min_le2_imp] Theorem
⊢ ∀x1 x2 y1 y2. x1 ≤ y1 ∧ x2 ≤ y2 ⇒ min x1 x2 ≤ min y1 y2
[min_refl] Theorem
⊢ ∀x. min x x = x
[mono_decreasing_suc] Theorem
⊢ ∀f. mono_decreasing f ⇔ ∀n. f (SUC n) ≤ f n
[mono_increasing_converges_to_sup] Theorem
⊢ ∀f r. mono_increasing f ∧ f --> r ⇒ (r = sup (IMAGE f 𝕌(:num)))
[mono_increasing_suc] Theorem
⊢ ∀f. mono_increasing f ⇔ ∀n. f n ≤ f (SUC n)
[mul_assoc] Theorem
⊢ ∀x y z. x * (y * z) = x * y * z
[mul_comm] Theorem
⊢ ∀x y. x * y = y * x
[mul_le] Theorem
⊢ ∀x y. 0 ≤ x ∧ y ≤ 0 ⇒ x * y ≤ 0
[mul_let] Theorem
⊢ ∀x y. 0 ≤ x ∧ y < 0 ⇒ x * y ≤ 0
[mul_lneg] Theorem
⊢ ∀x y. -x * y = -(x * y)
[mul_lone] Theorem
⊢ ∀x. 1 * x = x
[mul_lt] Theorem
⊢ ∀x y. 0 < x ∧ y < 0 ⇒ x * y < 0
[mul_lte] Theorem
⊢ ∀x y. 0 < x ∧ y ≤ 0 ⇒ x * y ≤ 0
[mul_lzero] Theorem
⊢ ∀x. 0 * x = 0
[mul_not_infty] Theorem
⊢ (∀c y. 0 ≤ c ∧ y ≠ NegInf ⇒ Normal c * y ≠ NegInf) ∧
(∀c y. 0 ≤ c ∧ y ≠ PosInf ⇒ Normal c * y ≠ PosInf) ∧
(∀c y. c ≤ 0 ∧ y ≠ NegInf ⇒ Normal c * y ≠ PosInf) ∧
∀c y. c ≤ 0 ∧ y ≠ PosInf ⇒ Normal c * y ≠ NegInf
[mul_not_infty2] Theorem
⊢ ∀x y.
x ≠ NegInf ∧ x ≠ PosInf ∧ y ≠ NegInf ∧ y ≠ PosInf ⇒
x * y ≠ NegInf ∧ x * y ≠ PosInf
[mul_rneg] Theorem
⊢ ∀x y. x * -y = -(x * y)
[mul_rone] Theorem
⊢ ∀x. x * 1 = x
[mul_rzero] Theorem
⊢ ∀x. x * 0 = 0
[ne_01] Theorem
⊢ 0 ≠ 1
[ne_02] Theorem
⊢ 0 ≠ 2
[neg_0] Theorem
⊢ -0 = 0
[neg_eq0] Theorem
⊢ ∀x. (-x = 0) ⇔ (x = 0)
[neg_minus1] Theorem
⊢ ∀x. -x = -1 * x
[neg_mul2] Theorem
⊢ ∀x y. -x * -y = x * y
[neg_neg] Theorem
⊢ ∀x. --x = x
[neg_sub] Theorem
⊢ ∀x y.
x ≠ NegInf ∧ x ≠ PosInf ∨ y ≠ NegInf ∧ y ≠ PosInf ⇒
(-(x − y) = y − x)
[normal_real] Theorem
⊢ ∀x. x ≠ NegInf ∧ x ≠ PosInf ⇒ (Normal (real x) = x)
[num_not_infty] Theorem
⊢ ∀n. &n ≠ NegInf ∧ &n ≠ PosInf
[pow2_sqrt] Theorem
⊢ ∀x. 0 ≤ x ⇒ (sqrt (x pow 2) = x)
[pow_0] Theorem
⊢ ∀x. x pow 0 = 1
[pow_1] Theorem
⊢ ∀x. x pow 1 = x
[pow_2] Theorem
⊢ ∀x. x pow 2 = x * x
[pow_add] Theorem
⊢ ∀x n m. x pow (n + m) = x pow n * x pow m
[pow_le] Theorem
⊢ ∀n x y. 0 ≤ x ∧ x ≤ y ⇒ x pow n ≤ y pow n
[pow_le_mono] Theorem
⊢ ∀x n m. 1 ≤ x ∧ n ≤ m ⇒ x pow n ≤ x pow m
[pow_lt] Theorem
⊢ ∀n x y. 0 ≤ x ∧ x < y ⇒ x pow SUC n < y pow SUC n
[pow_lt2] Theorem
⊢ ∀n x y. n ≠ 0 ∧ 0 ≤ x ∧ x < y ⇒ x pow n < y pow n
[pow_minus1] Theorem
⊢ ∀n. -1 pow (2 * n) = 1
[pow_mul] Theorem
⊢ ∀n x y. (x * y) pow n = x pow n * y pow n
[pow_neg_odd] Theorem
⊢ ∀x. x < 0 ⇒ (x pow n < 0 ⇔ ODD n)
[pow_not_infty] Theorem
⊢ ∀n x. x ≠ NegInf ∧ x ≠ PosInf ⇒ x pow n ≠ NegInf ∧ x pow n ≠ PosInf
[pow_pos_even] Theorem
⊢ ∀x. x < 0 ⇒ (0 < x pow n ⇔ EVEN n)
[pow_pos_le] Theorem
⊢ ∀x. 0 ≤ x ⇒ ∀n. 0 ≤ x pow n
[pow_pos_lt] Theorem
⊢ ∀x n. 0 < x ⇒ 0 < x pow n
[pow_zero] Theorem
⊢ ∀n x. (x pow SUC n = 0) ⇔ (x = 0)
[pow_zero_imp] Theorem
⊢ ∀n x. (x pow n = 0) ⇒ (x = 0)
[quotient_normal] Theorem
⊢ ∀n m. &n / &m = Normal (&n / &m)
[rat_not_infty] Theorem
⊢ ∀r. r ∈ Q_set ⇒ r ≠ NegInf ∧ r ≠ PosInf
[real_normal] Theorem
⊢ ∀x. real (Normal x) = x
[rinv_uniq] Theorem
⊢ ∀x y. (x * y = 1) ⇒ (y = inv x)
[sqrt_mono_le] Theorem
⊢ ∀x y. 0 ≤ x ∧ x ≤ y ⇒ sqrt x ≤ sqrt y
[sqrt_pos_le] Theorem
⊢ ∀x. 0 ≤ x ⇒ 0 ≤ sqrt x
[sqrt_pos_lt] Theorem
⊢ ∀x. 0 < x ⇒ 0 < sqrt x
[sqrt_pow2] Theorem
⊢ ∀x. (sqrt x pow 2 = x) ⇔ 0 ≤ x
[sub_0] Theorem
⊢ ∀x y. (x − y = 0) ⇒ (x = y)
[sub_add] Theorem
⊢ ∀x y. y ≠ NegInf ∧ y ≠ PosInf ⇒ (x − y + y = x)
[sub_add2] Theorem
⊢ ∀x y. x ≠ NegInf ∧ x ≠ PosInf ⇒ (x + (y − x) = y)
[sub_ldistrib] Theorem
⊢ ∀x y z.
x ≠ NegInf ∧ x ≠ PosInf ∧ y ≠ NegInf ∧ y ≠ PosInf ∧
z ≠ NegInf ∧ z ≠ PosInf ⇒
(x * (y − z) = x * y − x * z)
[sub_le_eq] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ⇒ (y − x ≤ z ⇔ y ≤ z + x)
[sub_le_eq2] Theorem
⊢ ∀x y z.
y ≠ NegInf ∧ y ≠ PosInf ∧ x ≠ NegInf ∧ z ≠ NegInf ⇒
(y − x ≤ z ⇔ y ≤ z + x)
[sub_le_imp] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ∧ y ≤ z + x ⇒ y − x ≤ z
[sub_le_imp2] Theorem
⊢ ∀x y z. y ≠ NegInf ∧ y ≠ PosInf ∧ y ≤ z + x ⇒ y − x ≤ z
[sub_le_switch] Theorem
⊢ ∀x y z.
x ≠ NegInf ∧ x ≠ PosInf ∧ z ≠ NegInf ∧ z ≠ PosInf ⇒
(y − x ≤ z ⇔ y − z ≤ x)
[sub_le_switch2] Theorem
⊢ ∀x y z.
x ≠ NegInf ∧ x ≠ PosInf ∧ y ≠ NegInf ∧ y ≠ PosInf ⇒
(y − x ≤ z ⇔ y − z ≤ x)
[sub_le_zero] Theorem
⊢ ∀x y. y ≠ NegInf ∧ y ≠ PosInf ⇒ (x ≤ y ⇔ x − y ≤ 0)
[sub_lneg] Theorem
⊢ ∀x y.
x ≠ NegInf ∧ y ≠ NegInf ∨ x ≠ PosInf ∧ y ≠ PosInf ⇒
(-x − y = -(x + y))
[sub_lt_imp] Theorem
⊢ ∀x y z. x ≠ NegInf ∧ x ≠ PosInf ∧ y < z + x ⇒ y − x < z
[sub_lt_imp2] Theorem
⊢ ∀x y z. z ≠ NegInf ∧ z ≠ PosInf ∧ y < z + x ⇒ y − x < z
[sub_lt_zero] Theorem
⊢ ∀x y. x < y ⇒ x − y < 0
[sub_lt_zero2] Theorem
⊢ ∀x y. y ≠ NegInf ∧ y ≠ PosInf ∧ x − y < 0 ⇒ x < y
[sub_lzero] Theorem
⊢ ∀x. 0 − x = -x
[sub_not_infty] Theorem
⊢ ∀x y.
(x ≠ NegInf ∧ y ≠ PosInf ⇒ x − y ≠ NegInf) ∧
(x ≠ PosInf ∧ y ≠ NegInf ⇒ x − y ≠ PosInf)
[sub_rdistrib] Theorem
⊢ ∀x y z.
x ≠ NegInf ∧ x ≠ PosInf ∧ y ≠ NegInf ∧ y ≠ PosInf ∧
z ≠ NegInf ∧ z ≠ PosInf ⇒
((x − y) * z = x * z − y * z)
[sub_refl] Theorem
⊢ ∀x. x ≠ NegInf ∧ x ≠ PosInf ⇒ (x − x = 0)
[sub_rneg] Theorem
⊢ ∀x y. x − -y = x + y
[sub_rzero] Theorem
⊢ ∀x. x − 0 = x
[sub_zero_le] Theorem
⊢ ∀x y. x ≤ y ⇔ 0 ≤ y − x
[sub_zero_lt] Theorem
⊢ ∀x y. x < y ⇒ 0 < y − x
[sub_zero_lt2] Theorem
⊢ ∀x y. x ≠ NegInf ∧ x ≠ PosInf ∧ 0 < y − x ⇒ x < y
[sup_add_mono] Theorem
⊢ ∀f g.
(∀n. 0 ≤ f n) ∧ (∀n. f n ≤ f (SUC n)) ∧ (∀n. 0 ≤ g n) ∧
(∀n. g n ≤ g (SUC n)) ⇒
(sup (IMAGE (λn. f n + g n) 𝕌(:num)) =
sup (IMAGE f 𝕌(:num)) + sup (IMAGE g 𝕌(:num)))
[sup_cmul] Theorem
⊢ ∀f c.
0 ≤ c ⇒
(sup (IMAGE (λn. Normal c * f n) 𝕌(:α)) =
Normal c * sup (IMAGE f 𝕌(:α)))
[sup_const] Theorem
⊢ ∀x. sup (λy. y = x) = x
[sup_const_alt] Theorem
⊢ ∀p z. (∃x. p x) ∧ (∀x. p x ⇒ (x = z)) ⇒ (sup p = z)
[sup_const_over_set] Theorem
⊢ ∀s k. s ≠ ∅ ⇒ (sup (IMAGE (λx. k) s) = k)
[sup_eq] Theorem
⊢ ∀p x.
(sup p = x) ⇔ (∀y. p y ⇒ y ≤ x) ∧ ∀y. (∀z. p z ⇒ z ≤ y) ⇒ x ≤ y
[sup_le] Theorem
⊢ ∀p x. sup p ≤ x ⇔ ∀y. p y ⇒ y ≤ x
[sup_le_mono] Theorem
⊢ ∀f z.
(∀n. f n ≤ f (SUC n)) ∧ z < sup (IMAGE f 𝕌(:num)) ⇒ ∃n. z ≤ f n
[sup_le_sup_imp] Theorem
⊢ ∀p q. (∀x. p x ⇒ ∃y. q y ∧ x ≤ y) ⇒ sup p ≤ sup q
[sup_lt] Theorem
⊢ ∀P y. (∃x. P x ∧ y < x) ⇔ y < sup P
[sup_lt_epsilon] Theorem
⊢ ∀P e.
0 < e ∧ (∃x. P x ∧ x ≠ NegInf) ∧ sup P ≠ PosInf ⇒
∃x. P x ∧ sup P < x + e
[sup_lt_infty] Theorem
⊢ ∀p. sup p < PosInf ⇒ ∀x. p x ⇒ x < PosInf
[sup_max] Theorem
⊢ ∀p z. p z ∧ (∀x. p x ⇒ x ≤ z) ⇒ (sup p = z)
[sup_mono] Theorem
⊢ ∀p q.
(∀n. p n ≤ q n) ⇒ sup (IMAGE p 𝕌(:num)) ≤ sup (IMAGE q 𝕌(:num))
[sup_num] Theorem
⊢ sup (λx. ∃n. x = &n) = PosInf
[sup_seq] Theorem
⊢ ∀f l.
mono_increasing f ⇒
(f --> l ⇔ (sup (IMAGE (λn. Normal (f n)) 𝕌(:num)) = Normal l))
[sup_suc] Theorem
⊢ ∀f.
(∀m n. m ≤ n ⇒ f m ≤ f n) ⇒
(sup (IMAGE (λn. f (SUC n)) 𝕌(:num)) = sup (IMAGE f 𝕌(:num)))
[sup_sum_mono] Theorem
⊢ ∀f s.
FINITE s ∧ (∀i. i ∈ s ⇒ ∀n. 0 ≤ f i n) ∧
(∀i. i ∈ s ⇒ ∀n. f i n ≤ f i (SUC n)) ⇒
(sup (IMAGE (λn. SIGMA (λi. f i n) s) 𝕌(:num)) =
SIGMA (λi. sup (IMAGE (f i) 𝕌(:num))) s)
[third_cancel] Theorem
⊢ 3 * (1 / 3) = 1
[thirds_between] Theorem
⊢ ((0 < 1 / 3 ∧ 1 / 3 < 1) ∧ 0 < 2 / 3 ∧ 2 / 3 < 1) ∧
(0 ≤ 1 / 3 ∧ 1 / 3 ≤ 1) ∧ 0 ≤ 2 / 3 ∧ 2 / 3 ≤ 1
*)
end
HOL 4, Kananaskis-13