Structure fmapalTheory
signature fmapalTheory =
sig
type thm = Thm.thm
(* Definitions *)
val AP_SND : thm
val OFU : thm
val OPTION_FLAT_primitive : thm
val OPTION_UPDATE : thm
val ORWL : thm
val UFO : thm
val bt_map : thm
val bt_to_fmap_lb : thm
val bt_to_fmap_lb_ub : thm
val bt_to_fmap_ub : thm
val bt_to_orl_lb_ub_ac_tupled_AUX : thm
val fmap : thm
val incr_build : thm
val incr_flat : thm
val incr_sort : thm
val optry : thm
val unlookup : thm
val vcossa : thm
(* Theorems *)
val FAPPLY_fmap_CONS : thm
val FAPPLY_fmap_NIL : thm
val FAPPLY_node : thm
val FAPPLY_nt : thm
val FMAPAL_FDOM_THM : thm
val FMAPAL_fmap : thm
val FUN_fmap_thm : thm
val OPTION_FLAT : thm
val OPTION_FLAT_ind : thm
val ORL : thm
val ORL_DRESTRICT_COMPL_IMP : thm
val ORL_DRESTRICT_IMP : thm
val ORL_FMAPAL : thm
val ORL_FUNION_IMP : thm
val ORL_bt : thm
val ORL_bt_ind : thm
val ORL_bt_lb : thm
val ORL_bt_lb_ind : thm
val ORL_bt_lb_ub : thm
val ORL_bt_lb_ub_ind : thm
val ORL_bt_ub : thm
val ORL_bt_ub_ind : thm
val ORL_ind : thm
val ORL_sublists : thm
val ORL_sublists_ind : thm
val ORWL_DRESTRICT_COMPL_THM : thm
val ORWL_DRESTRICT_THM : thm
val ORWL_FUNION_THM : thm
val ORWL_bt_to_orl : thm
val assocv : thm
val assocv_ind : thm
val better_bt_to_orl : thm
val bl_to_fmap : thm
val bl_to_fmap_ind : thm
val bt_FST_FDOM : thm
val bt_rplacv_cn : thm
val bt_rplacv_cn_ind : thm
val bt_rplacv_thm : thm
val bt_to_fmap : thm
val bt_to_fmap_ind : thm
val bt_to_orl : thm
val bt_to_orl_ID_IMP : thm
val bt_to_orl_ac : thm
val bt_to_orl_ac_ind : thm
val bt_to_orl_ind : thm
val bt_to_orl_lb : thm
val bt_to_orl_lb_ac : thm
val bt_to_orl_lb_ac_ind : thm
val bt_to_orl_lb_ind : thm
val bt_to_orl_lb_ub : thm
val bt_to_orl_lb_ub_ac : thm
val bt_to_orl_lb_ub_ac_ind : thm
val bt_to_orl_lb_ub_ind : thm
val bt_to_orl_ub : thm
val bt_to_orl_ub_ac : thm
val bt_to_orl_ub_ac_ind : thm
val bt_to_orl_ub_ind : thm
val diff_merge : thm
val diff_merge_ind : thm
val fmap_FDOM : thm
val fmap_FDOM_rec : thm
val fmap_ORWL_thm : thm
val incr_merge : thm
val incr_merge_ind : thm
val inter_merge : thm
val inter_merge_ind : thm
val list_rplacv_cn : thm
val list_rplacv_cn_ind : thm
val list_rplacv_thm : thm
val merge : thm
val merge_ind : thm
val merge_out : thm
val merge_out_ind : thm
val o_f_bt_map : thm
val o_f_fmap : thm
val optry_list : thm
val optry_list_ind : thm
val fmapal_grammars : type_grammar.grammar * term_grammar.grammar
(*
[enumeral] Parent theory of "fmapal"
[finite_map] Parent theory of "fmapal"
[AP_SND] Definition
|- !f a b. AP_SND f (a,b) = (a,f b)
[OFU] Definition
|- !cmp f g.
OFU cmp f g =
DRESTRICT f {x | LESS_ALL cmp x (FDOM g)} FUNION g
[OPTION_FLAT_primitive] Definition
|- OPTION_FLAT =
WFREC (@R. WF R /\ (!l. R l (NONE::l)) /\ !a l. R l (SOME a::l))
(\OPTION_FLAT a'.
case a' of
[] => I []
| NONE::l => I (OPTION_FLAT l)
| SOME a::l => I (a ++ OPTION_FLAT l))
[OPTION_UPDATE] Definition
|- !f g x. OPTION_UPDATE f g x = optry (f x) (g x)
[ORWL] Definition
|- !cmp f l. ORWL cmp f l <=> (f = fmap l) /\ ORL cmp l
[UFO] Definition
|- !cmp f g.
UFO cmp f g =
f FUNION
DRESTRICT g {y | (!z. z IN FDOM f ==> (apto cmp z y = LESS))}
[bt_map] Definition
|- (!f. bt_map f nt = nt) /\
!f l x r.
bt_map f (node l x r) = node (bt_map f l) (f x) (bt_map f r)
[bt_to_fmap_lb] Definition
|- !cmp lb t.
bt_to_fmap_lb cmp lb t =
DRESTRICT (FMAPAL cmp t) {x | apto cmp lb x = LESS}
[bt_to_fmap_lb_ub] Definition
|- !cmp lb t ub.
bt_to_fmap_lb_ub cmp lb t ub =
DRESTRICT (FMAPAL cmp t)
{x | (apto cmp lb x = LESS) /\ (apto cmp x ub = LESS)}
[bt_to_fmap_ub] Definition
|- !cmp t ub.
bt_to_fmap_ub cmp t ub =
DRESTRICT (FMAPAL cmp t) {x | apto cmp x ub = LESS}
[bt_to_orl_lb_ub_ac_tupled_AUX] Definition
|- !R.
bt_to_orl_lb_ub_ac_tupled_aux R =
WFREC R
(\bt_to_orl_lb_ub_ac_tupled a.
case a of
(cmp,lb,nt,ub,m) => I m
| (cmp,lb,node l (x,y) r,ub,m) =>
I
(if apto cmp lb x = LESS then
if apto cmp x ub = LESS then
bt_to_orl_lb_ub_ac_tupled
(cmp,lb,l,x,
(x,y)::
bt_to_orl_lb_ub_ac_tupled
(cmp,x,r,ub,m))
else bt_to_orl_lb_ub_ac_tupled (cmp,lb,l,ub,m)
else bt_to_orl_lb_ub_ac_tupled (cmp,lb,r,ub,m)))
[fmap] Definition
|- !l. fmap l = FEMPTY |++ REVERSE l
[incr_build] Definition
|- (!cmp. incr_build cmp [] = []) /\
!cmp ab l.
incr_build cmp (ab::l) =
incr_merge cmp [ab] (incr_build cmp l)
[incr_flat] Definition
|- !cmp lol. incr_flat cmp lol = merge_out cmp [] lol
[incr_sort] Definition
|- !cmp l. incr_sort cmp l = merge_out cmp [] (incr_build cmp l)
[optry] Definition
|- (!p q. optry (SOME p) q = SOME p) /\ !q. optry NONE q = q
[unlookup] Definition
|- !f. unlookup f = FUN_FMAP (THE o f) (IS_SOME o f)
[vcossa] Definition
|- !a l. vcossa a l = assocv l a
[FAPPLY_fmap_CONS] Theorem
|- !x y z l. fmap ((y,z)::l) ' x = if x = y then z else fmap l ' x
[FAPPLY_fmap_NIL] Theorem
|- !x. fmap [] ' x = FEMPTY ' x
[FAPPLY_node] Theorem
|- !cmp x l a b r.
FMAPAL cmp (node l (a,b) r) ' x =
case apto cmp x a of
LESS => FMAPAL cmp l ' x
| EQUAL => b
| GREATER => FMAPAL cmp r ' x
[FAPPLY_nt] Theorem
|- !cmp x. FMAPAL cmp nt ' x = FEMPTY ' x
[FMAPAL_FDOM_THM] Theorem
|- (!cmp x. x IN FDOM (FMAPAL cmp nt) <=> F) /\
!cmp x a b l r.
x IN FDOM (FMAPAL cmp (node l (a,b) r)) <=>
case apto cmp x a of
LESS => x IN FDOM (FMAPAL cmp l)
| EQUAL => T
| GREATER => x IN FDOM (FMAPAL cmp r)
[FMAPAL_fmap] Theorem
|- !cmp l. fmap l = FMAPAL cmp (list_to_bt (incr_sort cmp l))
[FUN_fmap_thm] Theorem
|- !f l. fmap (MAP (\x. (x,f x)) l) = FUN_FMAP f (set l)
[OPTION_FLAT] Theorem
|- (OPTION_FLAT [] = []) /\
(!l. OPTION_FLAT (NONE::l) = OPTION_FLAT l) /\
!l a. OPTION_FLAT (SOME a::l) = a ++ OPTION_FLAT l
[OPTION_FLAT_ind] Theorem
|- !P.
P [] /\ (!l. P l ==> P (NONE::l)) /\
(!a l. P l ==> P (SOME a::l)) ==>
!v. P v
[ORL] Theorem
|- (!cmp. ORL cmp [] <=> T) /\
!l cmp b a.
ORL cmp ((a,b)::l) <=>
ORL cmp l /\ !p q. MEM (p,q) l ==> (apto cmp a p = LESS)
[ORL_DRESTRICT_COMPL_IMP] Theorem
|- !cmp l.
ORL cmp l ==>
!m.
OL cmp m ==>
ORL cmp (diff_merge cmp l m) /\
(fmap (diff_merge cmp l m) =
DRESTRICT (fmap l) (COMPL (set m)))
[ORL_DRESTRICT_IMP] Theorem
|- !cmp l.
ORL cmp l ==>
!m.
OL cmp m ==>
ORL cmp (inter_merge cmp l m) /\
(fmap (inter_merge cmp l m) = DRESTRICT (fmap l) (set m))
[ORL_FMAPAL] Theorem
|- !cmp l. ORL cmp l ==> (fmap l = FMAPAL cmp (list_to_bt l))
[ORL_FUNION_IMP] Theorem
|- !cmp l.
ORL cmp l ==>
!m.
ORL cmp m ==>
ORL cmp (merge cmp l m) /\
(fmap (merge cmp l m) = fmap l FUNION fmap m)
[ORL_bt] Theorem
|- (ORL_bt cmp nt <=> T) /\
(ORL_bt cmp (node l (x,y) r) <=>
ORL_bt_ub cmp l x /\ ORL_bt_lb cmp x r)
[ORL_bt_ind] Theorem
|- !P.
(!cmp. P cmp nt) /\ (!cmp l x y r. P cmp (node l (x,y) r)) ==>
!v v1. P v v1
[ORL_bt_lb] Theorem
|- (!lb cmp. ORL_bt_lb cmp lb nt <=> T) /\
!y x r lb l cmp.
ORL_bt_lb cmp lb (node l (x,y) r) <=>
ORL_bt_lb_ub cmp lb l x /\ ORL_bt_lb cmp x r
[ORL_bt_lb_ind] Theorem
|- !P.
(!cmp lb. P cmp lb nt) /\
(!cmp lb l x y r. P cmp x r ==> P cmp lb (node l (x,y) r)) ==>
!v v1 v2. P v v1 v2
[ORL_bt_lb_ub] Theorem
|- (!ub lb cmp. ORL_bt_lb_ub cmp lb nt ub <=> (apto cmp lb ub = LESS)) /\
!y x ub r lb l cmp.
ORL_bt_lb_ub cmp lb (node l (x,y) r) ub <=>
ORL_bt_lb_ub cmp lb l x /\ ORL_bt_lb_ub cmp x r ub
[ORL_bt_lb_ub_ind] Theorem
|- !P.
(!cmp lb ub. P cmp lb nt ub) /\
(!cmp lb l x y r ub.
P cmp lb l x /\ P cmp x r ub ==>
P cmp lb (node l (x,y) r) ub) ==>
!v v1 v2 v3. P v v1 v2 v3
[ORL_bt_ub] Theorem
|- (!ub cmp. ORL_bt_ub cmp nt ub <=> T) /\
!y x ub r l cmp.
ORL_bt_ub cmp (node l (x,y) r) ub <=>
ORL_bt_ub cmp l x /\ ORL_bt_lb_ub cmp x r ub
[ORL_bt_ub_ind] Theorem
|- !P.
(!cmp ub. P cmp nt ub) /\
(!cmp l x y r ub. P cmp l x ==> P cmp (node l (x,y) r) ub) ==>
!v v1 v2. P v v1 v2
[ORL_ind] Theorem
|- !P.
(!cmp. P cmp []) /\ (!cmp a b l. P cmp l ==> P cmp ((a,b)::l)) ==>
!v v1. P v v1
[ORL_sublists] Theorem
|- (!cmp. ORL_sublists cmp [] <=> T) /\
(!lol cmp. ORL_sublists cmp (NONE::lol) <=> ORL_sublists cmp lol) /\
!m lol cmp.
ORL_sublists cmp (SOME m::lol) <=>
ORL cmp m /\ ORL_sublists cmp lol
[ORL_sublists_ind] Theorem
|- !P.
(!cmp. P cmp []) /\
(!cmp lol. P cmp lol ==> P cmp (NONE::lol)) /\
(!cmp m lol. P cmp lol ==> P cmp (SOME m::lol)) ==>
!v v1. P v v1
[ORWL_DRESTRICT_COMPL_THM] Theorem
|- !cmp s l t m.
ORWL cmp s l /\ OWL cmp t m ==>
ORWL cmp (DRESTRICT s (COMPL t)) (diff_merge cmp l m)
[ORWL_DRESTRICT_THM] Theorem
|- !cmp s l t m.
ORWL cmp s l /\ OWL cmp t m ==>
ORWL cmp (DRESTRICT s t) (inter_merge cmp l m)
[ORWL_FUNION_THM] Theorem
|- !cmp s l t m.
ORWL cmp s l /\ ORWL cmp t m ==>
ORWL cmp (s FUNION t) (merge cmp l m)
[ORWL_bt_to_orl] Theorem
|- !cmp t. ORWL cmp (FMAPAL cmp t) (bt_to_orl cmp t)
[assocv] Theorem
|- (!a. assocv [] a = NONE) /\
!y x l a.
assocv ((x,y)::l) a = if a = x then SOME y else assocv l a
[assocv_ind] Theorem
|- !P.
(!a. P [] a) /\
(!x y l a. (a <> x ==> P l a) ==> P ((x,y)::l) a) ==>
!v v1. P v v1
[better_bt_to_orl] Theorem
|- !cmp t.
bt_to_orl cmp t =
if ORL_bt cmp t then bt_to_list_ac t []
else bt_to_orl_ac cmp t []
[bl_to_fmap] Theorem
|- (!cmp. bl_to_fmap cmp nbl = FEMPTY) /\
(!cmp b. bl_to_fmap cmp (zerbl b) = bl_to_fmap cmp b) /\
!y x t cmp b.
bl_to_fmap cmp (onebl (x,y) t b) =
OFU cmp
(FEMPTY |+ (x,y) FUNION
DRESTRICT (FMAPAL cmp t) {z | apto cmp x z = LESS})
(bl_to_fmap cmp b)
[bl_to_fmap_ind] Theorem
|- !P.
(!cmp. P cmp nbl) /\ (!cmp b. P cmp b ==> P cmp (zerbl b)) /\
(!cmp x y t b. P cmp b ==> P cmp (onebl (x,y) t b)) ==>
!v v1. P v v1
[bt_FST_FDOM] Theorem
|- !cmp t. FDOM (FMAPAL cmp t) = ENUMERAL cmp (bt_map FST t)
[bt_rplacv_cn] Theorem
|- (!y x cn cmp. bt_rplacv_cn cmp (x,y) nt cn = nt) /\
!z y x w r l cn cmp.
bt_rplacv_cn cmp (x,y) (node l (w,z) r) cn =
case apto cmp x w of
LESS => bt_rplacv_cn cmp (x,y) l (\m. cn (node m (w,z) r))
| EQUAL => cn (node l (x,y) r)
| GREATER =>
bt_rplacv_cn cmp (x,y) r (\m. cn (node l (w,z) m))
[bt_rplacv_cn_ind] Theorem
|- !P.
(!cmp x y cn. P cmp (x,y) nt cn) /\
(!cmp x y l w z r cn.
((apto cmp x w = GREATER) ==>
P cmp (x,y) r (\m. cn (node l (w,z) m))) /\
((apto cmp x w = LESS) ==>
P cmp (x,y) l (\m. cn (node m (w,z) r))) ==>
P cmp (x,y) (node l (w,z) r) cn) ==>
!v v1 v2 v3 v4. P v (v1,v2) v3 v4
[bt_rplacv_thm] Theorem
|- !cmp x y t.
(let
ans = bt_rplacv_cn cmp (x,y) t (\m. m)
in
if ans = nt then x NOTIN FDOM (FMAPAL cmp t)
else
x IN FDOM (FMAPAL cmp t) /\
(FMAPAL cmp t |+ (x,y) = FMAPAL cmp ans))
[bt_to_fmap] Theorem
|- (!cmp. FMAPAL cmp nt = FEMPTY) /\
!x v r l cmp.
FMAPAL cmp (node l (x,v) r) =
DRESTRICT (FMAPAL cmp l) {y | apto cmp y x = LESS} FUNION
FEMPTY |+ (x,v) FUNION
DRESTRICT (FMAPAL cmp r) {z | apto cmp x z = LESS}
[bt_to_fmap_ind] Theorem
|- !P.
(!cmp. P cmp nt) /\
(!cmp l x v r. P cmp l /\ P cmp r ==> P cmp (node l (x,v) r)) ==>
!v v1. P v v1
[bt_to_orl] Theorem
|- (bt_to_orl cmp nt = []) /\
(bt_to_orl cmp (node l (x,y) r) =
bt_to_orl_ub cmp l x ++ [(x,y)] ++ bt_to_orl_lb cmp x r)
[bt_to_orl_ID_IMP] Theorem
|- !cmp l. ORL cmp l ==> (bt_to_orl cmp (list_to_bt l) = l)
[bt_to_orl_ac] Theorem
|- (bt_to_orl_ac cmp nt m = m) /\
(bt_to_orl_ac cmp (node l (x,y) r) m =
bt_to_orl_ub_ac cmp l x ((x,y)::bt_to_orl_lb_ac cmp x r m))
[bt_to_orl_ac_ind] Theorem
|- !P.
(!cmp m. P cmp nt m) /\
(!cmp l x y r m. P cmp (node l (x,y) r) m) ==>
!v v1 v2. P v v1 v2
[bt_to_orl_ind] Theorem
|- !P.
(!cmp. P cmp nt) /\ (!cmp l x y r. P cmp (node l (x,y) r)) ==>
!v v1. P v v1
[bt_to_orl_lb] Theorem
|- (!lb cmp. bt_to_orl_lb cmp lb nt = []) /\
!y x r lb l cmp.
bt_to_orl_lb cmp lb (node l (x,y) r) =
if apto cmp lb x = LESS then
bt_to_orl_lb_ub cmp lb l x ++ [(x,y)] ++
bt_to_orl_lb cmp x r
else bt_to_orl_lb cmp lb r
[bt_to_orl_lb_ac] Theorem
|- (!m lb cmp. bt_to_orl_lb_ac cmp lb nt m = m) /\
!y x r m lb l cmp.
bt_to_orl_lb_ac cmp lb (node l (x,y) r) m =
if apto cmp lb x = LESS then
bt_to_orl_lb_ub_ac cmp lb l x
((x,y)::bt_to_orl_lb_ac cmp x r m)
else bt_to_orl_lb_ac cmp lb r m
[bt_to_orl_lb_ac_ind] Theorem
|- !P.
(!cmp lb m. P cmp lb nt m) /\
(!cmp lb l x y r m.
(apto cmp lb x <> LESS ==> P cmp lb r m) /\
((apto cmp lb x = LESS) ==> P cmp x r m) ==>
P cmp lb (node l (x,y) r) m) ==>
!v v1 v2 v3. P v v1 v2 v3
[bt_to_orl_lb_ind] Theorem
|- !P.
(!cmp lb. P cmp lb nt) /\
(!cmp lb l x y r.
(apto cmp lb x <> LESS ==> P cmp lb r) /\
((apto cmp lb x = LESS) ==> P cmp x r) ==>
P cmp lb (node l (x,y) r)) ==>
!v v1 v2. P v v1 v2
[bt_to_orl_lb_ub] Theorem
|- (!ub lb cmp. bt_to_orl_lb_ub cmp lb nt ub = []) /\
!y x ub r lb l cmp.
bt_to_orl_lb_ub cmp lb (node l (x,y) r) ub =
if apto cmp lb x = LESS then
if apto cmp x ub = LESS then
bt_to_orl_lb_ub cmp lb l x ++ [(x,y)] ++
bt_to_orl_lb_ub cmp x r ub
else bt_to_orl_lb_ub cmp lb l ub
else bt_to_orl_lb_ub cmp lb r ub
[bt_to_orl_lb_ub_ac] Theorem
|- (!ub m lb cmp. bt_to_orl_lb_ub_ac cmp lb nt ub m = m) /\
!y x ub r m lb l cmp.
bt_to_orl_lb_ub_ac cmp lb (node l (x,y) r) ub m =
if apto cmp lb x = LESS then
if apto cmp x ub = LESS then
bt_to_orl_lb_ub_ac cmp lb l x
((x,y)::bt_to_orl_lb_ub_ac cmp x r ub m)
else bt_to_orl_lb_ub_ac cmp lb l ub m
else bt_to_orl_lb_ub_ac cmp lb r ub m
[bt_to_orl_lb_ub_ac_ind] Theorem
|- !P.
(!cmp lb ub m. P cmp lb nt ub m) /\
(!cmp lb l x y r ub m.
(apto cmp lb x <> LESS ==> P cmp lb r ub m) /\
((apto cmp lb x = LESS) /\ apto cmp x ub <> LESS ==>
P cmp lb l ub m) /\
((apto cmp lb x = LESS) /\ (apto cmp x ub = LESS) ==>
P cmp lb l x ((x,y)::bt_to_orl_lb_ub_ac cmp x r ub m)) /\
((apto cmp lb x = LESS) /\ (apto cmp x ub = LESS) ==>
P cmp x r ub m) ==>
P cmp lb (node l (x,y) r) ub m) ==>
!v v1 v2 v3 v4. P v v1 v2 v3 v4
[bt_to_orl_lb_ub_ind] Theorem
|- !P.
(!cmp lb ub. P cmp lb nt ub) /\
(!cmp lb l x y r ub.
(apto cmp lb x <> LESS ==> P cmp lb r ub) /\
((apto cmp lb x = LESS) /\ apto cmp x ub <> LESS ==>
P cmp lb l ub) /\
((apto cmp lb x = LESS) /\ (apto cmp x ub = LESS) ==>
P cmp lb l x) /\
((apto cmp lb x = LESS) /\ (apto cmp x ub = LESS) ==>
P cmp x r ub) ==>
P cmp lb (node l (x,y) r) ub) ==>
!v v1 v2 v3. P v v1 v2 v3
[bt_to_orl_ub] Theorem
|- (!ub cmp. bt_to_orl_ub cmp nt ub = []) /\
!y x ub r l cmp.
bt_to_orl_ub cmp (node l (x,y) r) ub =
if apto cmp x ub = LESS then
bt_to_orl_ub cmp l x ++ [(x,y)] ++
bt_to_orl_lb_ub cmp x r ub
else bt_to_orl_ub cmp l ub
[bt_to_orl_ub_ac] Theorem
|- (!ub m cmp. bt_to_orl_ub_ac cmp nt ub m = m) /\
!y x ub r m l cmp.
bt_to_orl_ub_ac cmp (node l (x,y) r) ub m =
if apto cmp x ub = LESS then
bt_to_orl_ub_ac cmp l x
((x,y)::bt_to_orl_lb_ub_ac cmp x r ub m)
else bt_to_orl_ub_ac cmp l ub m
[bt_to_orl_ub_ac_ind] Theorem
|- !P.
(!cmp ub m. P cmp nt ub m) /\
(!cmp l x y r ub m.
(apto cmp x ub <> LESS ==> P cmp l ub m) /\
((apto cmp x ub = LESS) ==>
P cmp l x ((x,y)::bt_to_orl_lb_ub_ac cmp x r ub m)) ==>
P cmp (node l (x,y) r) ub m) ==>
!v v1 v2 v3. P v v1 v2 v3
[bt_to_orl_ub_ind] Theorem
|- !P.
(!cmp ub. P cmp nt ub) /\
(!cmp l x y r ub.
(apto cmp x ub <> LESS ==> P cmp l ub) /\
((apto cmp x ub = LESS) ==> P cmp l x) ==>
P cmp (node l (x,y) r) ub) ==>
!v v1 v2. P v v1 v2
[diff_merge] Theorem
|- (!cmp. diff_merge cmp [] [] = []) /\
(!l cmp b a. diff_merge cmp ((a,b)::l) [] = (a,b)::l) /\
(!y m cmp. diff_merge cmp [] (y::m) = []) /\
!y m l cmp b a.
diff_merge cmp ((a,b)::l) (y::m) =
case apto cmp a y of
LESS => (a,b)::diff_merge cmp l (y::m)
| EQUAL => diff_merge cmp l m
| GREATER => diff_merge cmp ((a,b)::l) m
[diff_merge_ind] Theorem
|- !P.
(!cmp. P cmp [] []) /\ (!cmp a b l. P cmp ((a,b)::l) []) /\
(!cmp y m. P cmp [] (y::m)) /\
(!cmp a b l y m.
((apto cmp a y = EQUAL) ==> P cmp l m) /\
((apto cmp a y = GREATER) ==> P cmp ((a,b)::l) m) /\
((apto cmp a y = LESS) ==> P cmp l (y::m)) ==>
P cmp ((a,b)::l) (y::m)) ==>
!v v1 v2. P v v1 v2
[fmap_FDOM] Theorem
|- !l. FDOM (fmap l) = set (MAP FST l)
[fmap_FDOM_rec] Theorem
|- (!x. x IN FDOM (fmap []) <=> F) /\
!x w z l.
x IN FDOM (fmap ((w,z)::l)) <=> (x = w) \/ x IN FDOM (fmap l)
[fmap_ORWL_thm] Theorem
|- !cmp l. ORWL cmp (fmap l) (incr_sort cmp l)
[incr_merge] Theorem
|- (!l cmp. incr_merge cmp l [] = [SOME l]) /\
(!lol l cmp. incr_merge cmp l (NONE::lol) = SOME l::lol) /\
!m lol l cmp.
incr_merge cmp l (SOME m::lol) =
NONE::incr_merge cmp (merge cmp l m) lol
[incr_merge_ind] Theorem
|- !P.
(!cmp l. P cmp l []) /\ (!cmp l lol. P cmp l (NONE::lol)) /\
(!cmp l m lol.
P cmp (merge cmp l m) lol ==> P cmp l (SOME m::lol)) ==>
!v v1 v2. P v v1 v2
[inter_merge] Theorem
|- (!cmp. inter_merge cmp [] [] = []) /\
(!l cmp b a. inter_merge cmp ((a,b)::l) [] = []) /\
(!y m cmp. inter_merge cmp [] (y::m) = []) /\
!y m l cmp b a.
inter_merge cmp ((a,b)::l) (y::m) =
case apto cmp a y of
LESS => inter_merge cmp l (y::m)
| EQUAL => (a,b)::inter_merge cmp l m
| GREATER => inter_merge cmp ((a,b)::l) m
[inter_merge_ind] Theorem
|- !P.
(!cmp. P cmp [] []) /\ (!cmp a b l. P cmp ((a,b)::l) []) /\
(!cmp y m. P cmp [] (y::m)) /\
(!cmp a b l y m.
((apto cmp a y = EQUAL) ==> P cmp l m) /\
((apto cmp a y = GREATER) ==> P cmp ((a,b)::l) m) /\
((apto cmp a y = LESS) ==> P cmp l (y::m)) ==>
P cmp ((a,b)::l) (y::m)) ==>
!v v1 v2. P v v1 v2
[list_rplacv_cn] Theorem
|- (!y x cn. list_rplacv_cn (x,y) [] cn = []) /\
!z y x w l cn.
list_rplacv_cn (x,y) ((w,z)::l) cn =
if x = w then cn ((x,y)::l)
else list_rplacv_cn (x,y) l (\m. cn ((w,z)::m))
[list_rplacv_cn_ind] Theorem
|- !P.
(!x y cn. P (x,y) [] cn) /\
(!x y w z l cn.
(x <> w ==> P (x,y) l (\m. cn ((w,z)::m))) ==>
P (x,y) ((w,z)::l) cn) ==>
!v v1 v2 v3. P (v,v1) v2 v3
[list_rplacv_thm] Theorem
|- !x y l.
(let
ans = list_rplacv_cn (x,y) l (\m. m)
in
if ans = [] then x NOTIN FDOM (fmap l)
else x IN FDOM (fmap l) /\ (fmap l |+ (x,y) = fmap ans))
[merge] Theorem
|- (!l cmp. merge cmp [] l = l) /\
(!v5 v4 cmp. merge cmp (v4::v5) [] = v4::v5) /\
!l2 l1 cmp b2 b1 a2 a1.
merge cmp ((a1,b1)::l1) ((a2,b2)::l2) =
case apto cmp a1 a2 of
LESS => (a1,b1)::merge cmp l1 ((a2,b2)::l2)
| EQUAL => (a1,b1)::merge cmp l1 l2
| GREATER => (a2,b2)::merge cmp ((a1,b1)::l1) l2
[merge_ind] Theorem
|- !P.
(!cmp l. P cmp [] l) /\ (!cmp v4 v5. P cmp (v4::v5) []) /\
(!cmp a1 b1 l1 a2 b2 l2.
((apto cmp a1 a2 = EQUAL) ==> P cmp l1 l2) /\
((apto cmp a1 a2 = GREATER) ==> P cmp ((a1,b1)::l1) l2) /\
((apto cmp a1 a2 = LESS) ==> P cmp l1 ((a2,b2)::l2)) ==>
P cmp ((a1,b1)::l1) ((a2,b2)::l2)) ==>
!v v1 v2. P v v1 v2
[merge_out] Theorem
|- (!l cmp. merge_out cmp l [] = l) /\
(!lol l cmp. merge_out cmp l (NONE::lol) = merge_out cmp l lol) /\
!m lol l cmp.
merge_out cmp l (SOME m::lol) =
merge_out cmp (merge cmp l m) lol
[merge_out_ind] Theorem
|- !P.
(!cmp l. P cmp l []) /\
(!cmp l lol. P cmp l lol ==> P cmp l (NONE::lol)) /\
(!cmp l m lol.
P cmp (merge cmp l m) lol ==> P cmp l (SOME m::lol)) ==>
!v v1 v2. P v v1 v2
[o_f_bt_map] Theorem
|- !cmp f t. f o_f FMAPAL cmp t = FMAPAL cmp (bt_map (AP_SND f) t)
[o_f_fmap] Theorem
|- !f l. f o_f fmap l = fmap (MAP (AP_SND f) l)
[optry_list] Theorem
|- (!f. optry_list f [] = NONE) /\
(!l f. optry_list f (NONE::l) = optry_list f l) /\
!z l f. optry_list f (SOME z::l) = optry (f z) (optry_list f l)
[optry_list_ind] Theorem
|- !P.
(!f. P f []) /\ (!f l. P f l ==> P f (NONE::l)) /\
(!f z l. P f l ==> P f (SOME z::l)) ==>
!v v1. P v v1
*)
end
HOL 4, Kananaskis-13