Structure fmaptreeTheory


Source File Identifier index Theory binding index

signature fmaptreeTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val FTNode_def : thm
    val apply_path_def : thm
    val construct_def : thm
    val fmap_bij_thm : thm
    val fmaptree_TY_DEF : thm
    val fmtreerec_def : thm
    val fupd_at_path_def : thm
    val item_map_def : thm
    val relrec_def : thm
    val update_at_path_def : thm
    val wf_def : thm
  
  (*  Theorems  *)
    val FTNode_11 : thm
    val applicable_paths_FINITE : thm
    val apply_path_SNOC : thm
    val fmaptree_nchotomy : thm
    val fmtree_Axiom : thm
    val fmtreerec_thm : thm
    val ft_ind : thm
    val item_thm : thm
    val map_thm : thm
    val relrec_cases : thm
    val relrec_ind : thm
    val relrec_rules : thm
    val relrec_strongind : thm
    val wf_cases : thm
    val wf_ind : thm
    val wf_rules : thm
    val wf_strongind : thm
  
  val fmaptree_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [finite_map] Parent theory of "fmaptree"
   
   [FTNode_def]  Definition
      
      ⊢ ∀i fm. FTNode i fm = fromF (construct i (toF o_f fm))
   
   [apply_path_def]  Definition
      
      ⊢ (∀ft. apply_path [] ft = SOME ft) ∧
        ∀h t ft.
            apply_path (h::t) ft =
            if h ∈ FDOM (map ft) then apply_path t (map ft ' h) else NONE
   
   [construct_def]  Definition
      
      ⊢ ∀a kfm kl.
            construct a kfm kl =
            case kl of
              [] => SOME a
            | h::t => if h ∈ FDOM kfm then kfm ' h t else NONE
   
   [fmap_bij_thm]  Definition
      
      ⊢ (∀a. fromF (toF a) = a) ∧ ∀r. wf r ⇔ toF (fromF r) = r
   
   [fmaptree_TY_DEF]  Definition
      
      ⊢ ∃rep. TYPE_DEFINITION wf rep
   
   [fmtreerec_def]  Definition
      
      ⊢ ∀h ft. fmtreerec h ft = @r. relrec h ft r
   
   [fupd_at_path_def]  Definition
      
      ⊢ (∀f ft. fupd_at_path [] f ft = f ft) ∧
        ∀h t f ft.
            fupd_at_path (h::t) f ft =
            if h ∈ FDOM (map ft) then
              case fupd_at_path t f (map ft ' h) of
                NONE => NONE
              | SOME ft' => SOME (FTNode (item ft) (map ft |+ (h,ft')))
            else NONE
   
   [item_map_def]  Definition
      
      ⊢ ∀ft. ft = FTNode (item ft) (map ft)
   
   [relrec_def]  Definition
      
      ⊢ relrec =
        (λh a0 a1.
             ∀relrec'.
                 (∀a0 a1.
                      (∃i fm rfm.
                           a0 = FTNode i fm ∧ a1 = h i rfm fm ∧
                           FDOM rfm = FDOM fm ∧
                           ∀d. d ∈ FDOM fm ⇒ relrec' (fm ' d) (rfm ' d)) ⇒
                      relrec' a0 a1) ⇒
                 relrec' a0 a1)
   
   [update_at_path_def]  Definition
      
      ⊢ (∀a ft. update_at_path [] a ft = SOME (FTNode a (map ft))) ∧
        ∀h t a ft.
            update_at_path (h::t) a ft =
            if h ∈ FDOM (map ft) then
              case update_at_path t a (map ft ' h) of
                NONE => NONE
              | SOME ft' => SOME (FTNode (item ft) (map ft |+ (h,ft')))
            else NONE
   
   [wf_def]  Definition
      
      ⊢ wf =
        (λa0.
             ∀wf'.
                 (∀a0.
                      (∃a fm.
                           a0 = construct a fm ∧
                           ∀k. k ∈ FDOM fm ⇒ wf' (fm ' k)) ⇒
                      wf' a0) ⇒
                 wf' a0)
   
   [FTNode_11]  Theorem
      
      ⊢ FTNode i1 f1 = FTNode i2 f2 ⇔ i1 = i2 ∧ f1 = f2
   
   [applicable_paths_FINITE]  Theorem
      
      ⊢ ∀ft. FINITE {p | (∃ft'. apply_path p ft = SOME ft')}
   
   [apply_path_SNOC]  Theorem
      
      ⊢ ∀ft x p.
            apply_path (p ⧺ [x]) ft =
            case apply_path p ft of
              NONE => NONE
            | SOME ft' => FLOOKUP (map ft') x
   
   [fmaptree_nchotomy]  Theorem
      
      ⊢ ∀ft. ∃i fm. ft = FTNode i fm
   
   [fmtree_Axiom]  Theorem
      
      ⊢ ∀h. ∃f. ∀i fm. f (FTNode i fm) = h i fm (f o_f fm)
   
   [fmtreerec_thm]  Theorem
      
      ⊢ fmtreerec h (FTNode i fm) = h i (fmtreerec h o_f fm) fm
   
   [ft_ind]  Theorem
      
      ⊢ ∀P.
            (∀a fm. (∀k. k ∈ FDOM fm ⇒ P (fm ' k)) ⇒ P (FTNode a fm)) ⇒
            ∀ft. P ft
   
   [item_thm]  Theorem
      
      ⊢ item (FTNode i fm) = i
   
   [map_thm]  Theorem
      
      ⊢ map (FTNode i fm) = fm
   
   [relrec_cases]  Theorem
      
      ⊢ ∀h a0 a1.
            relrec h a0 a1 ⇔
            ∃i fm rfm.
                a0 = FTNode i fm ∧ a1 = h i rfm fm ∧ FDOM rfm = FDOM fm ∧
                ∀d. d ∈ FDOM fm ⇒ relrec h (fm ' d) (rfm ' d)
   
   [relrec_ind]  Theorem
      
      ⊢ ∀h relrec'.
            (∀i fm rfm.
                 FDOM rfm = FDOM fm ∧
                 (∀d. d ∈ FDOM fm ⇒ relrec' (fm ' d) (rfm ' d)) ⇒
                 relrec' (FTNode i fm) (h i rfm fm)) ⇒
            ∀a0 a1. relrec h a0 a1 ⇒ relrec' a0 a1
   
   [relrec_rules]  Theorem
      
      ⊢ ∀h i fm rfm.
            FDOM rfm = FDOM fm ∧
            (∀d. d ∈ FDOM fm ⇒ relrec h (fm ' d) (rfm ' d)) ⇒
            relrec h (FTNode i fm) (h i rfm fm)
   
   [relrec_strongind]  Theorem
      
      ⊢ ∀h relrec'.
            (∀i fm rfm.
                 FDOM rfm = FDOM fm ∧
                 (∀d.
                      d ∈ FDOM fm ⇒
                      relrec h (fm ' d) (rfm ' d) ∧
                      relrec' (fm ' d) (rfm ' d)) ⇒
                 relrec' (FTNode i fm) (h i rfm fm)) ⇒
            ∀a0 a1. relrec h a0 a1 ⇒ relrec' a0 a1
   
   [wf_cases]  Theorem
      
      ⊢ ∀a0.
            wf a0 ⇔
            ∃a fm. a0 = construct a fm ∧ ∀k. k ∈ FDOM fm ⇒ wf (fm ' k)
   
   [wf_ind]  Theorem
      
      ⊢ ∀wf'.
            (∀a fm. (∀k. k ∈ FDOM fm ⇒ wf' (fm ' k)) ⇒ wf' (construct a fm)) ⇒
            ∀a0. wf a0 ⇒ wf' a0
   
   [wf_rules]  Theorem
      
      ⊢ ∀a fm. (∀k. k ∈ FDOM fm ⇒ wf (fm ' k)) ⇒ wf (construct a fm)
   
   [wf_strongind]  Theorem
      
      ⊢ ∀wf'.
            (∀a fm.
                 (∀k. k ∈ FDOM fm ⇒ wf (fm ' k) ∧ wf' (fm ' k)) ⇒
                 wf' (construct a fm)) ⇒
            ∀a0. wf a0 ⇒ wf' a0
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-13