Structure gcdsetTheory


Source File Identifier index Theory binding index

signature gcdsetTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val gcdset_def : thm
  
  (*  Theorems  *)
    val gcdset_EMPTY : thm
    val gcdset_INSERT : thm
    val gcdset_divides : thm
    val gcdset_greatest : thm
  
  val gcdset_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [gcd] Parent theory of "gcdset"
   
   [pred_set] Parent theory of "gcdset"
   
   [gcdset_def]  Definition
      
      ⊢ ∀s.
            gcdset s =
            if s = ∅ ∨ s = {0} then 0
            else
              MAX_SET
                ({n | n ≤ MIN_SET (s DELETE 0)} ∩
                 {d | ∀e. e ∈ s ⇒ divides d e})
   
   [gcdset_EMPTY]  Theorem
      
      ⊢ gcdset ∅ = 0
   
   [gcdset_INSERT]  Theorem
      
      ⊢ gcdset (x INSERT s) = gcd x (gcdset s)
   
   [gcdset_divides]  Theorem
      
      ⊢ ∀e. e ∈ s ⇒ divides (gcdset s) e
   
   [gcdset_greatest]  Theorem
      
      ⊢ (∀e. e ∈ s ⇒ divides g e) ⇒ divides g (gcdset s)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-13