Structure indexedListsTheory
signature indexedListsTheory =
sig
type thm = Thm.thm
(* Definitions *)
val FOLDRi_def : thm
val LIST_RELi_def : thm
val MAPi_ACC_def : thm
val MAPi_def : thm
val delN_def : thm
val findi_def : thm
(* Theorems *)
val EL_MAP2i : thm
val EL_MAPi : thm
val EL_delN_AFTER : thm
val EL_delN_BEFORE : thm
val EL_findi : thm
val FOLDR_MAPi : thm
val FOLDRi_APPEND : thm
val FOLDRi_CONG : thm
val FOLDRi_CONG' : thm
val GENLIST_CONG : thm
val LENGTH_MAP2i : thm
val LENGTH_MAPi : thm
val LIST_RELi_APPEND_I : thm
val LIST_RELi_EL_EQN : thm
val LIST_RELi_LENGTH : thm
val LIST_RELi_cases : thm
val LIST_RELi_ind : thm
val LIST_RELi_rules : thm
val LIST_RELi_strongind : thm
val LIST_RELi_thm : thm
val LT_SUC : thm
val MAP2i_NIL2 : thm
val MAP2i_compute : thm
val MAP2i_def : thm
val MAP2i_ind : thm
val MAP2ia_NIL2 : thm
val MAP2ia_def : thm
val MAP2ia_ind : thm
val MAP_MAPi : thm
val MAPi_ACC_MAPi : thm
val MAPi_APPEND : thm
val MAPi_CONG : thm
val MAPi_CONG' : thm
val MAPi_GENLIST : thm
val MAPi_compute : thm
val MEM_MAPi : thm
val MEM_findi : thm
val delN_shortens : thm
val findi_EL : thm
val fupdLast_EQ_NIL : thm
val fupdLast_FRONT_LAST : thm
val fupdLast_def : thm
val fupdLast_ind : thm
val indexedLists_grammars : type_grammar.grammar * term_grammar.grammar
(*
[rich_list] Parent theory of "indexedLists"
[FOLDRi_def] Definition
⊢ (∀f a. FOLDRi f a [] = a) ∧
∀f a h t. FOLDRi f a (h::t) = f 0 h (FOLDRi (f ∘ SUC) a t)
[LIST_RELi_def] Definition
⊢ LIST_RELi =
(λR a0 a1.
∀LIST_RELi'.
(∀a0 a1.
a0 = [] ∧ a1 = [] ∨
(∃h1 h2 l1 l2.
a0 = l1 ⧺ [h1] ∧ a1 = l2 ⧺ [h2] ∧
R (LENGTH l1) h1 h2 ∧ LIST_RELi' l1 l2) ⇒
LIST_RELi' a0 a1) ⇒
LIST_RELi' a0 a1)
[MAPi_ACC_def] Definition
⊢ (∀f i a. MAPi_ACC f i a [] = REVERSE a) ∧
∀f i a h t. MAPi_ACC f i a (h::t) = MAPi_ACC f (i + 1) (f i h::a) t
[MAPi_def] Definition
⊢ (∀f. MAPi f [] = []) ∧
∀f h t. MAPi f (h::t) = f 0 h::MAPi (f ∘ SUC) t
[delN_def] Definition
⊢ (∀i. delN i [] = []) ∧
∀i h t. delN i (h::t) = if i = 0 then t else h::delN (i − 1) t
[findi_def] Definition
⊢ (∀x. findi x [] = 0) ∧
∀x h t. findi x (h::t) = if x = h then 0 else 1 + findi x t
[EL_MAP2i] Theorem
⊢ ∀f l1 l2 n.
n < LENGTH l1 ∧ n < LENGTH l2 ⇒
EL n (MAP2i f l1 l2) = f n (EL n l1) (EL n l2)
[EL_MAPi] Theorem
⊢ ∀f n l. n < LENGTH l ⇒ EL n (MAPi f l) = f n (EL n l)
[EL_delN_AFTER] Theorem
⊢ ∀l i j. j ≤ i ∧ i + 1 < LENGTH l ⇒ EL i (delN j l) = EL (i + 1) l
[EL_delN_BEFORE] Theorem
⊢ ∀l i j. i < j ∧ j < LENGTH l ⇒ EL i (delN j l) = EL i l
[EL_findi] Theorem
⊢ ∀l x. MEM x l ⇒ EL (findi x l) l = x
[FOLDR_MAPi] Theorem
⊢ ∀f g a l. FOLDR f a (MAPi g l) = FOLDRi ($o f ∘ g) a l
[FOLDRi_APPEND] Theorem
⊢ ∀f.
FOLDRi f a (l1 ⧺ l2) =
FOLDRi f (FOLDRi (f ∘ $+ (LENGTH l1)) a l2) l1
[FOLDRi_CONG] Theorem
⊢ l1 = l2 ⇒
(∀n e a. n < LENGTH l2 ⇒ MEM e l2 ⇒ f1 n e a = f2 n e a) ⇒
a1 = a2 ⇒
FOLDRi f1 a1 l1 = FOLDRi f2 a2 l2
[FOLDRi_CONG'] Theorem
⊢ l1 = l2 ∧
(∀n a. n < LENGTH l2 ⇒ f1 n (EL n l2) a = f2 n (EL n l2) a) ∧
a1 = a2 ⇒
FOLDRi f1 a1 l1 = FOLDRi f2 a2 l2
[GENLIST_CONG] Theorem
⊢ (∀m. m < n ⇒ f1 m = f2 m) ⇒ GENLIST f1 n = GENLIST f2 n
[LENGTH_MAP2i] Theorem
⊢ ∀f l1 l2. LENGTH (MAP2i f l1 l2) = MIN (LENGTH l1) (LENGTH l2)
[LENGTH_MAPi] Theorem
⊢ ∀f l. LENGTH (MAPi f l) = LENGTH l
[LIST_RELi_APPEND_I] Theorem
⊢ LIST_RELi R l1 l2 ∧ LIST_RELi (R ∘ $+ (LENGTH l1)) m1 m2 ⇒
LIST_RELi R (l1 ⧺ m1) (l2 ⧺ m2)
[LIST_RELi_EL_EQN] Theorem
⊢ LIST_RELi R l1 l2 ⇔
LENGTH l1 = LENGTH l2 ∧ ∀i. i < LENGTH l1 ⇒ R i (EL i l1) (EL i l2)
[LIST_RELi_LENGTH] Theorem
⊢ ∀l1 l2. LIST_RELi R l1 l2 ⇒ LENGTH l1 = LENGTH l2
[LIST_RELi_cases] Theorem
⊢ ∀R a0 a1.
LIST_RELi R a0 a1 ⇔
a0 = [] ∧ a1 = [] ∨
∃h1 h2 l1 l2.
a0 = l1 ⧺ [h1] ∧ a1 = l2 ⧺ [h2] ∧ R (LENGTH l1) h1 h2 ∧
LIST_RELi R l1 l2
[LIST_RELi_ind] Theorem
⊢ ∀R LIST_RELi'.
LIST_RELi' [] [] ∧
(∀h1 h2 l1 l2.
R (LENGTH l1) h1 h2 ∧ LIST_RELi' l1 l2 ⇒
LIST_RELi' (l1 ⧺ [h1]) (l2 ⧺ [h2])) ⇒
∀a0 a1. LIST_RELi R a0 a1 ⇒ LIST_RELi' a0 a1
[LIST_RELi_rules] Theorem
⊢ ∀R.
LIST_RELi R [] [] ∧
∀h1 h2 l1 l2.
R (LENGTH l1) h1 h2 ∧ LIST_RELi R l1 l2 ⇒
LIST_RELi R (l1 ⧺ [h1]) (l2 ⧺ [h2])
[LIST_RELi_strongind] Theorem
⊢ ∀R LIST_RELi'.
LIST_RELi' [] [] ∧
(∀h1 h2 l1 l2.
R (LENGTH l1) h1 h2 ∧ LIST_RELi R l1 l2 ∧ LIST_RELi' l1 l2 ⇒
LIST_RELi' (l1 ⧺ [h1]) (l2 ⧺ [h2])) ⇒
∀a0 a1. LIST_RELi R a0 a1 ⇒ LIST_RELi' a0 a1
[LIST_RELi_thm] Theorem
⊢ (LIST_RELi R [] x ⇔ x = []) ∧
(LIST_RELi R (h::t) l ⇔
∃h' t'. l = h'::t' ∧ R 0 h h' ∧ LIST_RELi (R ∘ SUC) t t')
[LT_SUC] Theorem
⊢ n < SUC m ⇔ n = 0 ∨ ∃n0. n = SUC n0 ∧ n0 < m
[MAP2i_NIL2] Theorem
⊢ MAP2i f l1 [] = []
[MAP2i_compute] Theorem
⊢ MAP2i f l1 l2 = indexedLists$MAP2ia f 0 l1 l2
[MAP2i_def] Theorem
⊢ (∀v0 f. MAP2i f [] v0 = []) ∧
(∀v6 v5 f. MAP2i f (v5::v6) [] = []) ∧
∀t2 t1 h2 h1 f.
MAP2i f (h1::t1) (h2::t2) = f 0 h1 h2::MAP2i (f ∘ SUC) t1 t2
[MAP2i_ind] Theorem
⊢ ∀P.
(∀f v0. P f [] v0) ∧ (∀f v5 v6. P f (v5::v6) []) ∧
(∀f h1 t1 h2 t2. P (f ∘ SUC) t1 t2 ⇒ P f (h1::t1) (h2::t2)) ⇒
∀v v1 v2. P v v1 v2
[MAP2ia_NIL2] Theorem
⊢ indexedLists$MAP2ia f i l1 [] = []
[MAP2ia_def] Theorem
⊢ (∀v0 i f. indexedLists$MAP2ia f i [] v0 = []) ∧
(∀v8 v7 i f. indexedLists$MAP2ia f i (v7::v8) [] = []) ∧
∀t2 t1 i h2 h1 f.
indexedLists$MAP2ia f i (h1::t1) (h2::t2) =
f i h1 h2::indexedLists$MAP2ia f (i + 1) t1 t2
[MAP2ia_ind] Theorem
⊢ ∀P.
(∀f i v0. P f i [] v0) ∧ (∀f i v7 v8. P f i (v7::v8) []) ∧
(∀f i h1 t1 h2 t2. P f (i + 1) t1 t2 ⇒ P f i (h1::t1) (h2::t2)) ⇒
∀v v1 v2 v3. P v v1 v2 v3
[MAP_MAPi] Theorem
⊢ ∀f g l. MAP f (MAPi g l) = MAPi ($o f ∘ g) l
[MAPi_ACC_MAPi] Theorem
⊢ MAPi_ACC f n a l = REVERSE a ⧺ MAPi (f ∘ $+ n) l
[MAPi_APPEND] Theorem
⊢ ∀l1 l2 f.
MAPi f (l1 ⧺ l2) = MAPi f l1 ⧺ MAPi (f ∘ $+ (LENGTH l1)) l2
[MAPi_CONG] Theorem
⊢ ∀l1 l2 f1 f2.
l1 = l2 ∧ (∀x n. MEM x l2 ⇒ f1 n x = f2 n x) ⇒
MAPi f1 l1 = MAPi f2 l2
[MAPi_CONG'] Theorem
⊢ l1 = l2 ⇒
(∀x n. x = EL n l2 ⇒ n < LENGTH l2 ⇒ f1 n x = f2 n x) ⇒
MAPi f1 l1 = MAPi f2 l2
[MAPi_GENLIST] Theorem
⊢ ∀l f. MAPi f l = GENLIST (S f (combin$C EL l)) (LENGTH l)
[MAPi_compute] Theorem
⊢ MAPi f l = MAPi_ACC f 0 [] l
[MEM_MAPi] Theorem
⊢ ∀x f l. MEM x (MAPi f l) ⇔ ∃n. n < LENGTH l ∧ x = f n (EL n l)
[MEM_findi] Theorem
⊢ MEM x l ⇒ findi x l < LENGTH l
[delN_shortens] Theorem
⊢ ∀l i. i < LENGTH l ⇒ LENGTH (delN i l) = LENGTH l − 1
[findi_EL] Theorem
⊢ ∀l n. n < LENGTH l ∧ ALL_DISTINCT l ⇒ findi (EL n l) l = n
[fupdLast_EQ_NIL] Theorem
⊢ (fupdLast f x = [] ⇔ x = []) ∧ ([] = fupdLast f x ⇔ x = [])
[fupdLast_FRONT_LAST] Theorem
⊢ fupdLast f l = if l = [] then [] else FRONT l ⧺ [f (LAST l)]
[fupdLast_def] Theorem
⊢ (∀f. fupdLast f [] = []) ∧ (∀h f. fupdLast f [h] = [f h]) ∧
∀v5 v4 h f. fupdLast f (h::v4::v5) = h::fupdLast f (v4::v5)
[fupdLast_ind] Theorem
⊢ ∀P.
(∀f. P f []) ∧ (∀f h. P f [h]) ∧
(∀f h v4 v5. P f (v4::v5) ⇒ P f (h::v4::v5)) ⇒
∀v v1. P v v1
*)
end
HOL 4, Kananaskis-13