Structure inttoTheory
signature inttoTheory =
sig
type thm = Thm.thm
(* Definitions *)
val intOrd : thm
val intto : thm
(* Theorems *)
val BIT1_gt_neg_thm : thm
val BIT1_nz : thm
val BIT2_gt_neg_thm : thm
val BIT2_nz : thm
val ZERO_eq_neg_ZERO_thm : thm
val apintto_thm : thm
val gt_neg_BIT1_thm : thm
val gt_neg_BIT2_thm : thm
val neg_BIT1_lt_thm : thm
val neg_BIT2_lt_thm : thm
val neg_ZERO_eq_ZERO_thm : thm
val neg_lt_BIT1_thm : thm
val neg_lt_BIT2_thm : thm
val neg_neg_thm : thm
val pos_pos_thm : thm
val intto_grammars : type_grammar.grammar * term_grammar.grammar
(*
[Omega] Parent theory of "intto"
[int_arith] Parent theory of "intto"
[toto] Parent theory of "intto"
[intOrd] Definition
|- intOrd = TO_of_LinearOrder $<
[intto] Definition
|- intto = TO intOrd
[BIT1_gt_neg_thm] Theorem
|- !m n. intOrd (&BIT1 m) (-&n) = GREATER
[BIT1_nz] Theorem
|- !n. BIT1 n <> 0
[BIT2_gt_neg_thm] Theorem
|- !m n. intOrd (&BIT2 m) (-&n) = GREATER
[BIT2_nz] Theorem
|- !n. BIT2 n <> 0
[ZERO_eq_neg_ZERO_thm] Theorem
|- intOrd (&ZERO) (-&ZERO) = EQUAL
[apintto_thm] Theorem
|- apto intto = intOrd
[gt_neg_BIT1_thm] Theorem
|- !m n. intOrd (&m) (-&BIT1 n) = GREATER
[gt_neg_BIT2_thm] Theorem
|- !m n. intOrd (&m) (-&BIT2 n) = GREATER
[neg_BIT1_lt_thm] Theorem
|- !m n. intOrd (-&BIT1 m) (&n) = LESS
[neg_BIT2_lt_thm] Theorem
|- !m n. intOrd (-&BIT2 m) (&n) = LESS
[neg_ZERO_eq_ZERO_thm] Theorem
|- intOrd (-&ZERO) (&ZERO) = EQUAL
[neg_lt_BIT1_thm] Theorem
|- !m n. intOrd (-&m) (&BIT1 n) = LESS
[neg_lt_BIT2_thm] Theorem
|- !m n. intOrd (-&m) (&BIT2 n) = LESS
[neg_neg_thm] Theorem
|- !m n. intOrd (-&m) (-&n) = numOrd n m
[pos_pos_thm] Theorem
|- !m n. intOrd (&m) (&n) = numOrd m n
*)
end
HOL 4, Kananaskis-13