Structure lift_ieeeTheory
signature lift_ieeeTheory =
sig
type thm = Thm.thm
(* Definitions *)
val error_def : thm
val normalizes_def : thm
(* Theorems *)
val closest_in_set : thm
val closest_is_closest : thm
val closest_is_everything : thm
val error_at_worst_lemma : thm
val error_is_zero : thm
val finite_float_within_threshold : thm
val float_add : thm
val float_add_finite : thm
val float_add_relative : thm
val float_div : thm
val float_div_finite : thm
val float_div_relative : thm
val float_eq : thm
val float_eq_refl : thm
val float_finite : thm
val float_ge : thm
val float_gt : thm
val float_le : thm
val float_lt : thm
val float_mul : thm
val float_mul_add : thm
val float_mul_add_finite : thm
val float_mul_add_relative : thm
val float_mul_finite : thm
val float_mul_relative : thm
val float_mul_sub : thm
val float_mul_sub_finite : thm
val float_mul_sub_relative : thm
val float_round_finite : thm
val float_sqrt : thm
val float_sqrt_finite : thm
val float_sqrt_relative : thm
val float_sub : thm
val float_sub_finite : thm
val float_sub_relative : thm
val float_to_real_finite : thm
val float_to_real_real_to_float_zero_id : thm
val float_to_real_threshold : thm
val is_closest_exits : thm
val is_finite_closest : thm
val is_finite_finite : thm
val is_finite_nonempty : thm
val non_representable_float_is_zero : thm
val real_to_float_finite_normal_id : thm
val relative_error : thm
val round_finite_normal_float_id : thm
val lift_ieee_grammars : type_grammar.grammar * term_grammar.grammar
(*
[binary_ieee] Parent theory of "lift_ieee"
[error_def] Definition
⊢ ∀x. error (:τ # χ) x = float_to_real (round roundTiesToEven x) − x
[normalizes_def] Definition
⊢ ∀x.
normalizes (:τ # χ) x ⇔
1 < bias (:χ) ∧ (2 pow (bias (:χ) − 1))⁻¹ ≤ abs x ∧
abs x < threshold (:τ # χ)
[closest_in_set] Theorem
⊢ ∀p s x. FINITE s ⇒ s ≠ ∅ ⇒ closest_such p s x ∈ s
[closest_is_closest] Theorem
⊢ ∀p s x. FINITE s ⇒ s ≠ ∅ ⇒ is_closest s x (closest_such p s x)
[closest_is_everything] Theorem
⊢ ∀p s x.
FINITE s ⇒
s ≠ ∅ ⇒
is_closest s x (closest_such p s x) ∧
((∃b. is_closest s x b ∧ p b) ⇒ p (closest_such p s x))
[error_at_worst_lemma] Theorem
⊢ ∀a x.
abs x < threshold (:τ # χ) ∧ float_is_finite a ⇒
abs (error (:τ # χ) x) ≤ abs (float_to_real a − x)
[error_is_zero] Theorem
⊢ ∀a x.
float_is_finite a ∧ (float_to_real a = x) ⇒
(error (:τ # χ) x = 0)
[finite_float_within_threshold] Theorem
⊢ ∀f.
float_is_finite f ⇒
¬(float_to_real f ≤ -threshold (:α # β)) ∧
¬(float_to_real f ≥ threshold (:α # β))
[float_add] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
abs (float_to_real a + float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_add roundTiesToEven a b)) ∧
(float_to_real (SND (float_add roundTiesToEven a b)) =
float_to_real a + float_to_real b +
error (:τ # χ) (float_to_real a + float_to_real b))
[float_add_finite] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
abs (float_to_real a + float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_add roundTiesToEven a b))
[float_add_relative] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
normalizes (:τ # χ) (float_to_real a + float_to_real b) ⇒
float_is_finite (SND (float_add roundTiesToEven a b)) ∧
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (SND (float_add roundTiesToEven a b)) =
(float_to_real a + float_to_real b) * (1 + e))
[float_div] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧ ¬float_is_zero b ∧
abs (float_to_real a / float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_div roundTiesToEven a b)) ∧
(float_to_real (SND (float_div roundTiesToEven a b)) =
float_to_real a / float_to_real b +
error (:τ # χ) (float_to_real a / float_to_real b))
[float_div_finite] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧ ¬float_is_zero b ∧
abs (float_to_real a / float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_div roundTiesToEven a b))
[float_div_relative] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧ ¬float_is_zero b ∧
normalizes (:τ # χ) (float_to_real a / float_to_real b) ⇒
float_is_finite (SND (float_div roundTiesToEven a b)) ∧
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (SND (float_div roundTiesToEven a b)) =
float_to_real a / float_to_real b * (1 + e))
[float_eq] Theorem
⊢ ∀x y.
float_is_finite x ∧ float_is_finite y ⇒
(float_equal x y ⇔ (float_to_real x = float_to_real y))
[float_eq_refl] Theorem
⊢ ∀x. float_equal x x ⇔ ¬float_is_nan x
[float_finite] Theorem
⊢ FINITE 𝕌(:(τ, χ) float)
[float_ge] Theorem
⊢ ∀x y.
float_is_finite x ∧ float_is_finite y ⇒
(float_greater_equal x y ⇔ float_to_real x ≥ float_to_real y)
[float_gt] Theorem
⊢ ∀x y.
float_is_finite x ∧ float_is_finite y ⇒
(float_greater_than x y ⇔ float_to_real x > float_to_real y)
[float_le] Theorem
⊢ ∀x y.
float_is_finite x ∧ float_is_finite y ⇒
(float_less_equal x y ⇔ float_to_real x ≤ float_to_real y)
[float_lt] Theorem
⊢ ∀x y.
float_is_finite x ∧ float_is_finite y ⇒
(float_less_than x y ⇔ float_to_real x < float_to_real y)
[float_mul] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
abs (float_to_real a * float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_mul roundTiesToEven a b)) ∧
(float_to_real (SND (float_mul roundTiesToEven a b)) =
float_to_real a * float_to_real b +
error (:τ # χ) (float_to_real a * float_to_real b))
[float_mul_add] Theorem
⊢ ∀a b c.
float_is_finite a ∧ float_is_finite b ∧ float_is_finite c ∧
abs (float_to_real a * float_to_real b + float_to_real c) <
threshold (:τ # χ) ⇒
float_is_finite (SND (float_mul_add roundTiesToEven a b c)) ∧
(float_to_real (SND (float_mul_add roundTiesToEven a b c)) =
float_to_real a * float_to_real b + float_to_real c +
error (:τ # χ)
(float_to_real a * float_to_real b + float_to_real c))
[float_mul_add_finite] Theorem
⊢ ∀a b c.
float_is_finite a ∧ float_is_finite b ∧ float_is_finite c ∧
abs (float_to_real a * float_to_real b + float_to_real c) <
threshold (:τ # χ) ⇒
float_is_finite (SND (float_mul_add roundTiesToEven a b c))
[float_mul_add_relative] Theorem
⊢ ∀a b c.
float_is_finite a ∧ float_is_finite b ∧ float_is_finite c ∧
normalizes (:τ # χ)
(float_to_real a * float_to_real b + float_to_real c) ⇒
float_is_finite (SND (float_mul_add roundTiesToEven a b c)) ∧
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (SND (float_mul_add roundTiesToEven a b c)) =
(float_to_real a * float_to_real b + float_to_real c) *
(1 + e))
[float_mul_finite] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
abs (float_to_real a * float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_mul roundTiesToEven a b))
[float_mul_relative] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
normalizes (:τ # χ) (float_to_real a * float_to_real b) ⇒
float_is_finite (SND (float_mul roundTiesToEven a b)) ∧
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (SND (float_mul roundTiesToEven a b)) =
float_to_real a * float_to_real b * (1 + e))
[float_mul_sub] Theorem
⊢ ∀a b c.
float_is_finite a ∧ float_is_finite b ∧ float_is_finite c ∧
abs (float_to_real a * float_to_real b − float_to_real c) <
threshold (:τ # χ) ⇒
float_is_finite (SND (float_mul_sub roundTiesToEven a b c)) ∧
(float_to_real (SND (float_mul_sub roundTiesToEven a b c)) =
float_to_real a * float_to_real b − float_to_real c +
error (:τ # χ)
(float_to_real a * float_to_real b − float_to_real c))
[float_mul_sub_finite] Theorem
⊢ ∀a b c.
float_is_finite a ∧ float_is_finite b ∧ float_is_finite c ∧
abs (float_to_real a * float_to_real b − float_to_real c) <
threshold (:τ # χ) ⇒
float_is_finite (SND (float_mul_sub roundTiesToEven a b c))
[float_mul_sub_relative] Theorem
⊢ ∀a b c.
float_is_finite a ∧ float_is_finite b ∧ float_is_finite c ∧
normalizes (:τ # χ)
(float_to_real a * float_to_real b − float_to_real c) ⇒
float_is_finite (SND (float_mul_sub roundTiesToEven a b c)) ∧
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (SND (float_mul_sub roundTiesToEven a b c)) =
(float_to_real a * float_to_real b − float_to_real c) *
(1 + e))
[float_round_finite] Theorem
⊢ ∀b x.
abs x < threshold (:τ # χ) ⇒
float_is_finite (float_round roundTiesToEven b x)
[float_sqrt] Theorem
⊢ ∀a.
float_is_finite a ∧ (a.Sign = 0w) ∧
abs (sqrt (float_to_real a)) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_sqrt roundTiesToEven a)) ∧
(float_to_real (SND (float_sqrt roundTiesToEven a)) =
sqrt (float_to_real a) +
error (:τ # χ) (sqrt (float_to_real a)))
[float_sqrt_finite] Theorem
⊢ ∀a.
float_is_finite a ∧ (a.Sign = 0w) ∧
abs (sqrt (float_to_real a)) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_sqrt roundTiesToEven a))
[float_sqrt_relative] Theorem
⊢ ∀a.
float_is_finite a ∧ (a.Sign = 0w) ∧
normalizes (:τ # χ) (sqrt (float_to_real a)) ⇒
float_is_finite (SND (float_sqrt roundTiesToEven a)) ∧
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (SND (float_sqrt roundTiesToEven a)) =
sqrt (float_to_real a) * (1 + e))
[float_sub] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
abs (float_to_real a − float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_sub roundTiesToEven a b)) ∧
(float_to_real (SND (float_sub roundTiesToEven a b)) =
float_to_real a − float_to_real b +
error (:τ # χ) (float_to_real a − float_to_real b))
[float_sub_finite] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
abs (float_to_real a − float_to_real b) < threshold (:τ # χ) ⇒
float_is_finite (SND (float_sub roundTiesToEven a b))
[float_sub_relative] Theorem
⊢ ∀a b.
float_is_finite a ∧ float_is_finite b ∧
normalizes (:τ # χ) (float_to_real a − float_to_real b) ⇒
float_is_finite (SND (float_sub roundTiesToEven a b)) ∧
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (SND (float_sub roundTiesToEven a b)) =
(float_to_real a − float_to_real b) * (1 + e))
[float_to_real_finite] Theorem
⊢ ∀x. float_is_finite x ⇒ abs (float_to_real x) ≤ largest (:τ # χ)
[float_to_real_real_to_float_zero_id] Theorem
⊢ float_to_real (real_to_float roundTiesToEven 0) = 0
[float_to_real_threshold] Theorem
⊢ ∀x. float_is_finite x ⇒ abs (float_to_real x) < threshold (:τ # χ)
[is_closest_exits] Theorem
⊢ ∀x s. FINITE s ⇒ s ≠ ∅ ⇒ ∃a. is_closest s x a
[is_finite_closest] Theorem
⊢ ∀p x. float_is_finite (closest_such p {a | float_is_finite a} x)
[is_finite_finite] Theorem
⊢ FINITE {a | float_is_finite a}
[is_finite_nonempty] Theorem
⊢ {a | float_is_finite a} ≠ ∅
[non_representable_float_is_zero] Theorem
⊢ ∀ff P.
2 * abs ff ≤ ulp (:α # β) ⇒
(float_to_real (float_round roundTiesToEven P ff) = 0)
[real_to_float_finite_normal_id] Theorem
⊢ ∀f.
float_is_finite f ∧ ¬float_is_zero f ⇒
(real_to_float roundTiesToEven (float_to_real f) = f)
[relative_error] Theorem
⊢ ∀x.
normalizes (:τ # χ) x ⇒
∃e.
abs e ≤ 1 / 2 pow (dimindex (:τ) + 1) ∧
(float_to_real (round roundTiesToEven x) = x * (1 + e))
[round_finite_normal_float_id] Theorem
⊢ ∀f.
float_is_finite f ∧ ¬float_is_zero f ⇒
(round roundTiesToEven (float_to_real f) = f)
*)
end
HOL 4, Kananaskis-13