Structure numeralTheory


Source File Identifier index Theory binding index

signature numeralTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val exactlog_def : thm
    val iBIT_cases : thm
    val iDUB : thm
    val iSQR : thm
    val iSUB_DEF : thm
    val iZ : thm
    val iiSUC : thm
    val internal_mult_def : thm
    val onecount_def : thm
    val texp_help_def : thm
  
  (*  Theorems  *)
    val DIV2_BIT1 : thm
    val DIVMOD_NUMERAL_CALC : thm
    val TWO_EXP_THM : thm
    val bit_induction : thm
    val bit_initiality : thm
    val divmod_POS : thm
    val enumeral_mult : thm
    val exactlog_characterisation : thm
    val iDUB_removal : thm
    val iSUB_THM : thm
    val internal_mult_characterisation : thm
    val numeral_MAX : thm
    val numeral_MIN : thm
    val numeral_add : thm
    val numeral_distrib : thm
    val numeral_div2 : thm
    val numeral_eq : thm
    val numeral_evenodd : thm
    val numeral_exp : thm
    val numeral_fact : thm
    val numeral_funpow : thm
    val numeral_iisuc : thm
    val numeral_lt : thm
    val numeral_lte : thm
    val numeral_mult : thm
    val numeral_pre : thm
    val numeral_sub : thm
    val numeral_suc : thm
    val numeral_texp_help : thm
    val onecount_characterisation : thm
    val texp_help0 : thm
    val texp_help_thm : thm
  
  val numeral_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [arithmetic] Parent theory of "numeral"
   
   [exactlog_def]  Definition
      
      ⊢ numeral$exactlog ZERO = ZERO ∧
        (∀n. numeral$exactlog (BIT1 n) = ZERO) ∧
        ∀n.
            numeral$exactlog (BIT2 n) =
            (let
               x = numeral$onecount n ZERO
             in
               if x = ZERO then ZERO else BIT1 x)
   
   [iBIT_cases]  Definition
      
      ⊢ (∀zf bf1 bf2. iBIT_cases ZERO zf bf1 bf2 = zf) ∧
        (∀n zf bf1 bf2. iBIT_cases (BIT1 n) zf bf1 bf2 = bf1 n) ∧
        ∀n zf bf1 bf2. iBIT_cases (BIT2 n) zf bf1 bf2 = bf2 n
   
   [iDUB]  Definition
      
      ⊢ ∀x. numeral$iDUB x = x + x
   
   [iSQR]  Definition
      
      ⊢ ∀x. numeral$iSQR x = x * x
   
   [iSUB_DEF]  Definition
      
      ⊢ (∀b x. numeral$iSUB b ZERO x = ZERO) ∧
        (∀b n x.
             numeral$iSUB b (BIT1 n) x =
             if b then
               iBIT_cases x (BIT1 n)
                 (λm. numeral$iDUB (numeral$iSUB T n m))
                 (λm. BIT1 (numeral$iSUB F n m))
             else
               iBIT_cases x (numeral$iDUB n)
                 (λm. BIT1 (numeral$iSUB F n m))
                 (λm. numeral$iDUB (numeral$iSUB F n m))) ∧
        ∀b n x.
            numeral$iSUB b (BIT2 n) x =
            if b then
              iBIT_cases x (BIT2 n) (λm. BIT1 (numeral$iSUB T n m))
                (λm. numeral$iDUB (numeral$iSUB T n m))
            else
              iBIT_cases x (BIT1 n) (λm. numeral$iDUB (numeral$iSUB T n m))
                (λm. BIT1 (numeral$iSUB F n m))
   
   [iZ]  Definition
      
      ⊢ ∀x. numeral$iZ x = x
   
   [iiSUC]  Definition
      
      ⊢ ∀n. numeral$iiSUC n = SUC (SUC n)
   
   [internal_mult_def]  Definition
      
      ⊢ internal_mult = $*
   
   [onecount_def]  Definition
      
      ⊢ (∀x. numeral$onecount ZERO x = x) ∧
        (∀n x. numeral$onecount (BIT1 n) x = numeral$onecount n (SUC x)) ∧
        ∀n x. numeral$onecount (BIT2 n) x = ZERO
   
   [texp_help_def]  Definition
      
      ⊢ (∀acc. numeral$texp_help 0 acc = BIT2 acc) ∧
        ∀n acc.
            numeral$texp_help (SUC n) acc = numeral$texp_help n (BIT1 acc)
   
   [DIV2_BIT1]  Theorem
      
      ⊢ DIV2 (BIT1 x) = x
   
   [DIVMOD_NUMERAL_CALC]  Theorem
      
      ⊢ (∀m n. m DIV BIT1 n = FST (DIVMOD (ZERO,m,BIT1 n))) ∧
        (∀m n. m DIV BIT2 n = FST (DIVMOD (ZERO,m,BIT2 n))) ∧
        (∀m n. m MOD BIT1 n = SND (DIVMOD (ZERO,m,BIT1 n))) ∧
        ∀m n. m MOD BIT2 n = SND (DIVMOD (ZERO,m,BIT2 n))
   
   [TWO_EXP_THM]  Theorem
      
      ⊢ 2 ** 0 = 1 ∧
        2 ** NUMERAL (BIT1 n) =
        NUMERAL (numeral$texp_help (PRE (BIT1 n)) ZERO) ∧
        2 ** NUMERAL (BIT2 n) = NUMERAL (numeral$texp_help (BIT1 n) ZERO)
   
   [bit_induction]  Theorem
      
      ⊢ ∀P.
            P ZERO ∧ (∀n. P n ⇒ P (BIT1 n)) ∧ (∀n. P n ⇒ P (BIT2 n)) ⇒
            ∀n. P n
   
   [bit_initiality]  Theorem
      
      ⊢ ∀zf b1f b2f.
            ∃f.
                f ZERO = zf ∧ (∀n. f (BIT1 n) = b1f n (f n)) ∧
                ∀n. f (BIT2 n) = b2f n (f n)
   
   [divmod_POS]  Theorem
      
      ⊢ ∀n.
            0 < n ⇒
            DIVMOD (a,m,n) =
            if m < n then (a,m)
            else (let q = findq (1,m,n) in DIVMOD (a + q,m − n * q,n))
   
   [enumeral_mult]  Theorem
      
      ⊢ ZERO * n = ZERO ∧ n * ZERO = ZERO ∧
        BIT1 x * BIT1 y = internal_mult (BIT1 x) (BIT1 y) ∧
        BIT1 x * BIT2 y =
        (let
           n = numeral$exactlog (BIT2 y)
         in
           if ODD n then numeral$texp_help (DIV2 n) (PRE (BIT1 x))
           else internal_mult (BIT1 x) (BIT2 y)) ∧
        BIT2 x * BIT1 y =
        (let
           m = numeral$exactlog (BIT2 x)
         in
           if ODD m then numeral$texp_help (DIV2 m) (PRE (BIT1 y))
           else internal_mult (BIT2 x) (BIT1 y)) ∧
        BIT2 x * BIT2 y =
        (let
           m = numeral$exactlog (BIT2 x) ;
           n = numeral$exactlog (BIT2 y)
         in
           if ODD m then numeral$texp_help (DIV2 m) (PRE (BIT2 y))
           else if ODD n then numeral$texp_help (DIV2 n) (PRE (BIT2 x))
           else internal_mult (BIT2 x) (BIT2 y))
   
   [exactlog_characterisation]  Theorem
      
      ⊢ ∀n m. numeral$exactlog n = BIT1 m ⇒ n = 2 ** (m + 1)
   
   [iDUB_removal]  Theorem
      
      ⊢ ∀n.
            numeral$iDUB (BIT1 n) = BIT2 (numeral$iDUB n) ∧
            numeral$iDUB (BIT2 n) = BIT2 (BIT1 n) ∧
            numeral$iDUB ZERO = ZERO
   
   [iSUB_THM]  Theorem
      
      ⊢ ∀b n m.
            numeral$iSUB b ZERO x = ZERO ∧ numeral$iSUB T n ZERO = n ∧
            numeral$iSUB F (BIT1 n) ZERO = numeral$iDUB n ∧
            numeral$iSUB T (BIT1 n) (BIT1 m) =
            numeral$iDUB (numeral$iSUB T n m) ∧
            numeral$iSUB F (BIT1 n) (BIT1 m) = BIT1 (numeral$iSUB F n m) ∧
            numeral$iSUB T (BIT1 n) (BIT2 m) = BIT1 (numeral$iSUB F n m) ∧
            numeral$iSUB F (BIT1 n) (BIT2 m) =
            numeral$iDUB (numeral$iSUB F n m) ∧
            numeral$iSUB F (BIT2 n) ZERO = BIT1 n ∧
            numeral$iSUB T (BIT2 n) (BIT1 m) = BIT1 (numeral$iSUB T n m) ∧
            numeral$iSUB F (BIT2 n) (BIT1 m) =
            numeral$iDUB (numeral$iSUB T n m) ∧
            numeral$iSUB T (BIT2 n) (BIT2 m) =
            numeral$iDUB (numeral$iSUB T n m) ∧
            numeral$iSUB F (BIT2 n) (BIT2 m) = BIT1 (numeral$iSUB F n m)
   
   [internal_mult_characterisation]  Theorem
      
      ⊢ ∀n m.
            internal_mult ZERO n = ZERO ∧ internal_mult n ZERO = ZERO ∧
            internal_mult (BIT1 n) m =
            numeral$iZ (numeral$iDUB (internal_mult n m) + m) ∧
            internal_mult (BIT2 n) m =
            numeral$iDUB (numeral$iZ (internal_mult n m + m))
   
   [numeral_MAX]  Theorem
      
      ⊢ MAX 0 x = x ∧ MAX x 0 = x ∧
        MAX (NUMERAL x) (NUMERAL y) = NUMERAL (if x < y then y else x)
   
   [numeral_MIN]  Theorem
      
      ⊢ MIN 0 x = 0 ∧ MIN x 0 = 0 ∧
        MIN (NUMERAL x) (NUMERAL y) = NUMERAL (if x < y then x else y)
   
   [numeral_add]  Theorem
      
      ⊢ ∀n m.
            numeral$iZ (ZERO + n) = n ∧ numeral$iZ (n + ZERO) = n ∧
            numeral$iZ (BIT1 n + BIT1 m) = BIT2 (numeral$iZ (n + m)) ∧
            numeral$iZ (BIT1 n + BIT2 m) = BIT1 (SUC (n + m)) ∧
            numeral$iZ (BIT2 n + BIT1 m) = BIT1 (SUC (n + m)) ∧
            numeral$iZ (BIT2 n + BIT2 m) = BIT2 (SUC (n + m)) ∧
            SUC (ZERO + n) = SUC n ∧ SUC (n + ZERO) = SUC n ∧
            SUC (BIT1 n + BIT1 m) = BIT1 (SUC (n + m)) ∧
            SUC (BIT1 n + BIT2 m) = BIT2 (SUC (n + m)) ∧
            SUC (BIT2 n + BIT1 m) = BIT2 (SUC (n + m)) ∧
            SUC (BIT2 n + BIT2 m) = BIT1 (numeral$iiSUC (n + m)) ∧
            numeral$iiSUC (ZERO + n) = numeral$iiSUC n ∧
            numeral$iiSUC (n + ZERO) = numeral$iiSUC n ∧
            numeral$iiSUC (BIT1 n + BIT1 m) = BIT2 (SUC (n + m)) ∧
            numeral$iiSUC (BIT1 n + BIT2 m) = BIT1 (numeral$iiSUC (n + m)) ∧
            numeral$iiSUC (BIT2 n + BIT1 m) = BIT1 (numeral$iiSUC (n + m)) ∧
            numeral$iiSUC (BIT2 n + BIT2 m) = BIT2 (numeral$iiSUC (n + m))
   
   [numeral_distrib]  Theorem
      
      ⊢ (∀n. 0 + n = n) ∧ (∀n. n + 0 = n) ∧
        (∀n m. NUMERAL n + NUMERAL m = NUMERAL (numeral$iZ (n + m))) ∧
        (∀n. 0 * n = 0) ∧ (∀n. n * 0 = 0) ∧
        (∀n m. NUMERAL n * NUMERAL m = NUMERAL (n * m)) ∧ (∀n. 0 − n = 0) ∧
        (∀n. n − 0 = n) ∧ (∀n m. NUMERAL n − NUMERAL m = NUMERAL (n − m)) ∧
        (∀n. 0 ** NUMERAL (BIT1 n) = 0) ∧ (∀n. 0 ** NUMERAL (BIT2 n) = 0) ∧
        (∀n. n ** 0 = 1) ∧
        (∀n m. NUMERAL n ** NUMERAL m = NUMERAL (n ** m)) ∧ SUC 0 = 1 ∧
        (∀n. SUC (NUMERAL n) = NUMERAL (SUC n)) ∧ PRE 0 = 0 ∧
        (∀n. PRE (NUMERAL n) = NUMERAL (PRE n)) ∧
        (∀n. NUMERAL n = 0 ⇔ n = ZERO) ∧ (∀n. 0 = NUMERAL n ⇔ n = ZERO) ∧
        (∀n m. NUMERAL n = NUMERAL m ⇔ n = m) ∧ (∀n. n < 0 ⇔ F) ∧
        (∀n. 0 < NUMERAL n ⇔ ZERO < n) ∧
        (∀n m. NUMERAL n < NUMERAL m ⇔ n < m) ∧ (∀n. 0 > n ⇔ F) ∧
        (∀n. NUMERAL n > 0 ⇔ ZERO < n) ∧
        (∀n m. NUMERAL n > NUMERAL m ⇔ m < n) ∧ (∀n. 0 ≤ n ⇔ T) ∧
        (∀n. NUMERAL n ≤ 0 ⇔ n ≤ ZERO) ∧
        (∀n m. NUMERAL n ≤ NUMERAL m ⇔ n ≤ m) ∧ (∀n. n ≥ 0 ⇔ T) ∧
        (∀n. 0 ≥ n ⇔ n = 0) ∧ (∀n m. NUMERAL n ≥ NUMERAL m ⇔ m ≤ n) ∧
        (∀n. ODD (NUMERAL n) ⇔ ODD n) ∧ (∀n. EVEN (NUMERAL n) ⇔ EVEN n) ∧
        ¬ODD 0 ∧ EVEN 0
   
   [numeral_div2]  Theorem
      
      ⊢ DIV2 0 = 0 ∧ (∀n. DIV2 (NUMERAL (BIT1 n)) = NUMERAL n) ∧
        ∀n. DIV2 (NUMERAL (BIT2 n)) = NUMERAL (SUC n)
   
   [numeral_eq]  Theorem
      
      ⊢ ∀n m.
            (ZERO = BIT1 n ⇔ F) ∧ (BIT1 n = ZERO ⇔ F) ∧
            (ZERO = BIT2 n ⇔ F) ∧ (BIT2 n = ZERO ⇔ F) ∧
            (BIT1 n = BIT2 m ⇔ F) ∧ (BIT2 n = BIT1 m ⇔ F) ∧
            (BIT1 n = BIT1 m ⇔ n = m) ∧ (BIT2 n = BIT2 m ⇔ n = m)
   
   [numeral_evenodd]  Theorem
      
      ⊢ ∀n.
            EVEN ZERO ∧ EVEN (BIT2 n) ∧ ¬EVEN (BIT1 n) ∧ ¬ODD ZERO ∧
            ¬ODD (BIT2 n) ∧ ODD (BIT1 n)
   
   [numeral_exp]  Theorem
      
      ⊢ (∀n. n ** ZERO = BIT1 ZERO) ∧
        (∀n m. n ** BIT1 m = n * numeral$iSQR (n ** m)) ∧
        ∀n m. n ** BIT2 m = numeral$iSQR n * numeral$iSQR (n ** m)
   
   [numeral_fact]  Theorem
      
      ⊢ FACT 0 = 1 ∧
        (∀n.
             FACT (NUMERAL (BIT1 n)) =
             NUMERAL (BIT1 n) * FACT (PRE (NUMERAL (BIT1 n)))) ∧
        ∀n.
            FACT (NUMERAL (BIT2 n)) =
            NUMERAL (BIT2 n) * FACT (NUMERAL (BIT1 n))
   
   [numeral_funpow]  Theorem
      
      ⊢ FUNPOW f 0 x = x ∧
        FUNPOW f (NUMERAL (BIT1 n)) x =
        FUNPOW f (PRE (NUMERAL (BIT1 n))) (f x) ∧
        FUNPOW f (NUMERAL (BIT2 n)) x = FUNPOW f (NUMERAL (BIT1 n)) (f x)
   
   [numeral_iisuc]  Theorem
      
      ⊢ numeral$iiSUC ZERO = BIT2 ZERO ∧
        numeral$iiSUC (BIT1 n) = BIT1 (SUC n) ∧
        numeral$iiSUC (BIT2 n) = BIT2 (SUC n)
   
   [numeral_lt]  Theorem
      
      ⊢ ∀n m.
            (ZERO < BIT1 n ⇔ T) ∧ (ZERO < BIT2 n ⇔ T) ∧ (n < ZERO ⇔ F) ∧
            (BIT1 n < BIT1 m ⇔ n < m) ∧ (BIT2 n < BIT2 m ⇔ n < m) ∧
            (BIT1 n < BIT2 m ⇔ ¬(m < n)) ∧ (BIT2 n < BIT1 m ⇔ n < m)
   
   [numeral_lte]  Theorem
      
      ⊢ ∀n m.
            (ZERO ≤ n ⇔ T) ∧ (BIT1 n ≤ ZERO ⇔ F) ∧ (BIT2 n ≤ ZERO ⇔ F) ∧
            (BIT1 n ≤ BIT1 m ⇔ n ≤ m) ∧ (BIT1 n ≤ BIT2 m ⇔ n ≤ m) ∧
            (BIT2 n ≤ BIT1 m ⇔ ¬(m ≤ n)) ∧ (BIT2 n ≤ BIT2 m ⇔ n ≤ m)
   
   [numeral_mult]  Theorem
      
      ⊢ ∀n m.
            ZERO * n = ZERO ∧ n * ZERO = ZERO ∧
            BIT1 n * m = numeral$iZ (numeral$iDUB (n * m) + m) ∧
            BIT2 n * m = numeral$iDUB (numeral$iZ (n * m + m))
   
   [numeral_pre]  Theorem
      
      ⊢ PRE ZERO = ZERO ∧ PRE (BIT1 ZERO) = ZERO ∧
        (∀n. PRE (BIT1 (BIT1 n)) = BIT2 (PRE (BIT1 n))) ∧
        (∀n. PRE (BIT1 (BIT2 n)) = BIT2 (BIT1 n)) ∧
        ∀n. PRE (BIT2 n) = BIT1 n
   
   [numeral_sub]  Theorem
      
      ⊢ ∀n m.
            NUMERAL (n − m) =
            if m < n then NUMERAL (numeral$iSUB T n m) else 0
   
   [numeral_suc]  Theorem
      
      ⊢ SUC ZERO = BIT1 ZERO ∧ (∀n. SUC (BIT1 n) = BIT2 n) ∧
        ∀n. SUC (BIT2 n) = BIT1 (SUC n)
   
   [numeral_texp_help]  Theorem
      
      ⊢ numeral$texp_help ZERO acc = BIT2 acc ∧
        numeral$texp_help (BIT1 n) acc =
        numeral$texp_help (PRE (BIT1 n)) (BIT1 acc) ∧
        numeral$texp_help (BIT2 n) acc =
        numeral$texp_help (BIT1 n) (BIT1 acc)
   
   [onecount_characterisation]  Theorem
      
      ⊢ ∀n a.
            0 < numeral$onecount n a ∧ 0 < n ⇒
            n = 2 ** (numeral$onecount n a − a) − 1
   
   [texp_help0]  Theorem
      
      ⊢ numeral$texp_help n 0 = 2 ** (n + 1)
   
   [texp_help_thm]  Theorem
      
      ⊢ ∀n a. numeral$texp_help n a = (a + 1) * 2 ** (n + 1)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-13