Structure numpairTheory
signature numpairTheory =
sig
type thm = Thm.thm
(* Definitions *)
val invtri_def : thm
val nfst_def : thm
val npair_def : thm
val nsnd_def : thm
val tri_def : thm
(* Theorems *)
val SND_invtri0 : thm
val invtri0_def : thm
val invtri0_ind : thm
val invtri0_thm : thm
val invtri_le : thm
val invtri_linverse : thm
val invtri_linverse_r : thm
val invtri_lower : thm
val invtri_unique : thm
val invtri_upper : thm
val nfst0 : thm
val nfst_le : thm
val nfst_le_npair : thm
val nfst_npair : thm
val npair : thm
val npair00 : thm
val npair2_lt : thm
val npair2_lt_E : thm
val npair2_lt_I : thm
val npair_11 : thm
val npair_EQ_0 : thm
val npair_cases : thm
val nsnd0 : thm
val nsnd_le : thm
val nsnd_le_npair : thm
val nsnd_npair : thm
val tri_11 : thm
val tri_LE : thm
val tri_LT : thm
val tri_LT_I : thm
val tri_eq_0 : thm
val tri_formula : thm
val tri_le : thm
val twotri_formula : thm
val numpair_grammars : type_grammar.grammar * term_grammar.grammar
(*
[basicSize] Parent theory of "numpair"
[while] Parent theory of "numpair"
[invtri_def] Definition
⊢ ∀n. tri⁻¹ n = SND (invtri0 n 0)
[nfst_def] Definition
⊢ ∀n. nfst n = tri (tri⁻¹ n) + tri⁻¹ n − n
[npair_def] Definition
⊢ ∀m n. m ⊗ n = tri (m + n) + n
[nsnd_def] Definition
⊢ ∀n. nsnd n = n − tri (tri⁻¹ n)
[tri_def] Definition
⊢ tri 0 = 0 ∧ ∀n. tri (SUC n) = SUC n + tri n
[SND_invtri0] Theorem
⊢ ∀n a. FST (invtri0 n a) < SUC (SND (invtri0 n a))
[invtri0_def] Theorem
⊢ ∀n a.
invtri0 n a =
if n < a + 1 then (n,a) else invtri0 (n − (a + 1)) (a + 1)
[invtri0_ind] Theorem
⊢ ∀P.
(∀n a. (¬(n < a + 1) ⇒ P (n − (a + 1)) (a + 1)) ⇒ P n a) ⇒
∀v v1. P v v1
[invtri0_thm] Theorem
⊢ ∀n a. tri (SND (invtri0 n a)) + FST (invtri0 n a) = n + tri a
[invtri_le] Theorem
⊢ tri⁻¹ n ≤ n
[invtri_linverse] Theorem
⊢ tri⁻¹ (tri n) = n
[invtri_linverse_r] Theorem
⊢ y ≤ x ⇒ tri⁻¹ (tri x + y) = x
[invtri_lower] Theorem
⊢ tri (tri⁻¹ n) ≤ n
[invtri_unique] Theorem
⊢ tri y ≤ n ∧ n < tri (y + 1) ⇒ tri⁻¹ n = y
[invtri_upper] Theorem
⊢ n < tri (tri⁻¹ n + 1)
[nfst0] Theorem
⊢ nfst 0 = 0
[nfst_le] Theorem
⊢ nfst n ≤ n
[nfst_le_npair] Theorem
⊢ n ≤ n ⊗ m
[nfst_npair] Theorem
⊢ nfst (x ⊗ y) = x
[npair] Theorem
⊢ ∀n. nfst n ⊗ nsnd n = n
[npair00] Theorem
⊢ 0 ⊗ 0 = 0
[npair2_lt] Theorem
⊢ n ⊗ n1 < n ⊗ n2 ⇔ n1 < n2
[npair2_lt_E] Theorem
⊢ n ⊗ n1 < n ⊗ n2 ⇒ n1 < n2
[npair2_lt_I] Theorem
⊢ n1 < n2 ⇒ n ⊗ n1 < n ⊗ n2
[npair_11] Theorem
⊢ x1 ⊗ y1 = x2 ⊗ y2 ⇔ x1 = x2 ∧ y1 = y2
[npair_EQ_0] Theorem
⊢ x ⊗ y = 0 ⇔ x = 0 ∧ y = 0
[npair_cases] Theorem
⊢ ∀n. ∃x y. n = x ⊗ y
[nsnd0] Theorem
⊢ nsnd 0 = 0
[nsnd_le] Theorem
⊢ nsnd n ≤ n
[nsnd_le_npair] Theorem
⊢ m ≤ n ⊗ m
[nsnd_npair] Theorem
⊢ nsnd (x ⊗ y) = y
[tri_11] Theorem
⊢ ∀m n. tri m = tri n ⇔ m = n
[tri_LE] Theorem
⊢ ∀m n. tri m ≤ tri n ⇔ m ≤ n
[tri_LT] Theorem
⊢ ∀n m. tri n < tri m ⇔ n < m
[tri_LT_I] Theorem
⊢ ∀n m. n < m ⇒ tri n < tri m
[tri_eq_0] Theorem
⊢ (tri n = 0 ⇔ n = 0) ∧ (0 = tri n ⇔ n = 0)
[tri_formula] Theorem
⊢ tri n = n * (n + 1) DIV 2
[tri_le] Theorem
⊢ n ≤ tri n
[twotri_formula] Theorem
⊢ 2 * tri n = n * (n + 1)
*)
end
HOL 4, Kananaskis-13