Structure powserTheory
signature powserTheory =
sig
type thm = Thm.thm
(* Definitions *)
val diffs : thm
(* Theorems *)
val DIFFS_EQUIV : thm
val DIFFS_LEMMA : thm
val DIFFS_LEMMA2 : thm
val DIFFS_NEG : thm
val POWDIFF : thm
val POWDIFF_LEMMA : thm
val POWREV : thm
val POWSER_INSIDE : thm
val POWSER_INSIDEA : thm
val TERMDIFF : thm
val TERMDIFF_LEMMA1 : thm
val TERMDIFF_LEMMA2 : thm
val TERMDIFF_LEMMA3 : thm
val TERMDIFF_LEMMA4 : thm
val TERMDIFF_LEMMA5 : thm
val powser_grammars : type_grammar.grammar * term_grammar.grammar
(*
[lim] Parent theory of "powser"
[diffs] Definition
⊢ ∀c. diffs c = (λn. &SUC n * c (SUC n))
[DIFFS_EQUIV] Theorem
⊢ ∀c x.
summable (λn. diffs c n * x pow n) ⇒
(λn. &n * (c n * x pow (n − 1))) sums
suminf (λn. diffs c n * x pow n)
[DIFFS_LEMMA] Theorem
⊢ ∀n c x.
sum (0,n) (λn. diffs c n * x pow n) =
sum (0,n) (λn. &n * (c n * x pow (n − 1))) +
&n * (c n * x pow (n − 1))
[DIFFS_LEMMA2] Theorem
⊢ ∀n c x.
sum (0,n) (λn. &n * (c n * x pow (n − 1))) =
sum (0,n) (λn. diffs c n * x pow n) −
&n * (c n * x pow (n − 1))
[DIFFS_NEG] Theorem
⊢ ∀c. diffs (λn. -c n) = (λn. -diffs c n)
[POWDIFF] Theorem
⊢ ∀n x y.
x pow SUC n − y pow SUC n =
(x − y) * sum (0,SUC n) (λp. x pow p * y pow (n − p))
[POWDIFF_LEMMA] Theorem
⊢ ∀n x y.
sum (0,SUC n) (λp. x pow p * y pow (SUC n − p)) =
y * sum (0,SUC n) (λp. x pow p * y pow (n − p))
[POWREV] Theorem
⊢ ∀n x y.
sum (0,SUC n) (λp. x pow p * y pow (n − p)) =
sum (0,SUC n) (λp. x pow (n − p) * y pow p)
[POWSER_INSIDE] Theorem
⊢ ∀f x z.
summable (λn. f n * x pow n) ∧ abs z < abs x ⇒
summable (λn. f n * z pow n)
[POWSER_INSIDEA] Theorem
⊢ ∀f x z.
summable (λn. f n * x pow n) ∧ abs z < abs x ⇒
summable (λn. abs (f n) * z pow n)
[TERMDIFF] Theorem
⊢ ∀c k' x.
summable (λn. c n * k' pow n) ∧
summable (λn. diffs c n * k' pow n) ∧
summable (λn. diffs (diffs c) n * k' pow n) ∧ abs x < abs k' ⇒
((λx. suminf (λn. c n * x pow n)) diffl
suminf (λn. diffs c n * x pow n)) x
[TERMDIFF_LEMMA1] Theorem
⊢ ∀m z h.
sum (0,m) (λp. (z + h) pow (m − p) * z pow p − z pow m) =
sum (0,m) (λp. z pow p * ((z + h) pow (m − p) − z pow (m − p)))
[TERMDIFF_LEMMA2] Theorem
⊢ ∀z h n.
h ≠ 0 ⇒
((z + h) pow n − z pow n) / h − &n * z pow (n − 1) =
h *
sum (0,n − 1)
(λp.
z pow p *
sum (0,n − 1 − p)
(λq. (z + h) pow q * z pow (n − 2 − p − q)))
[TERMDIFF_LEMMA3] Theorem
⊢ ∀z h n k'.
h ≠ 0 ∧ abs z ≤ k' ∧ abs (z + h) ≤ k' ⇒
abs (((z + h) pow n − z pow n) / h − &n * z pow (n − 1)) ≤
&n * (&(n − 1) * (k' pow (n − 2) * abs h))
[TERMDIFF_LEMMA4] Theorem
⊢ ∀f k' k.
0 < k ∧ (∀h. 0 < abs h ∧ abs h < k ⇒ abs (f h) ≤ k' * abs h) ⇒
(f -> 0) 0
[TERMDIFF_LEMMA5] Theorem
⊢ ∀f g k.
0 < k ∧ summable f ∧
(∀h. 0 < abs h ∧ abs h < k ⇒ ∀n. abs (g h n) ≤ f n * abs h) ⇒
((λh. suminf (g h)) -> 0) 0
*)
end
HOL 4, Kananaskis-13