Structure quotient_listTheory
signature quotient_listTheory =
sig
type thm = Thm.thm
(* Theorems *)
val ALL_EL_PRS : thm
val ALL_EL_RSP : thm
val APPEND_PRS : thm
val APPEND_RSP : thm
val CONS_PRS : thm
val CONS_RSP : thm
val FILTER_PRS : thm
val FILTER_RSP : thm
val FLAT_PRS : thm
val FLAT_RSP : thm
val FOLDL_PRS : thm
val FOLDL_RSP : thm
val FOLDR_PRS : thm
val FOLDR_RSP : thm
val LENGTH_PRS : thm
val LENGTH_RSP : thm
val LIST_EQUIV : thm
val LIST_MAP_I : thm
val LIST_QUOTIENT : thm
val LIST_REL_EQ : thm
val LIST_REL_REFL : thm
val LIST_REL_REL : thm
val MAP_PRS : thm
val MAP_RSP : thm
val NIL_PRS : thm
val NIL_RSP : thm
val NULL_PRS : thm
val NULL_RSP : thm
val REVERSE_PRS : thm
val REVERSE_RSP : thm
val SOME_EL_PRS : thm
val SOME_EL_RSP : thm
val quotient_list_grammars : type_grammar.grammar * term_grammar.grammar
(*
[quotient] Parent theory of "quotient_list"
[ALL_EL_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l P. EVERY P l ⇔ EVERY ((abs --> I) P) (MAP rep l)
[ALL_EL_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l1 l2 P1 P2.
(R ===> $<=>) P1 P2 ∧ LIST_REL R l1 l2 ⇒
(EVERY P1 l1 ⇔ EVERY P2 l2)
[APPEND_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l m. l ⧺ m = MAP abs (MAP rep l ⧺ MAP rep m)
[APPEND_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l1 l2 m1 m2.
LIST_REL R l1 l2 ∧ LIST_REL R m1 m2 ⇒
LIST_REL R (l1 ⧺ m1) (l2 ⧺ m2)
[CONS_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒ ∀t h. h::t = MAP abs (rep h::MAP rep t)
[CONS_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀t1 t2 h1 h2.
R h1 h2 ∧ LIST_REL R t1 t2 ⇒ LIST_REL R (h1::t1) (h2::t2)
[FILTER_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀P l. FILTER P l = MAP abs (FILTER ((abs --> I) P) (MAP rep l))
[FILTER_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀P1 P2 l1 l2.
(R ===> $<=>) P1 P2 ∧ LIST_REL R l1 l2 ⇒
LIST_REL R (FILTER P1 l1) (FILTER P2 l2)
[FLAT_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l. FLAT l = MAP abs (FLAT (MAP (MAP rep) l))
[FLAT_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l1 l2.
LIST_REL (LIST_REL R) l1 l2 ⇒
LIST_REL R (FLAT l1) (FLAT l2)
[FOLDL_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀l f e.
FOLDL f e l =
abs1
(FOLDL ((abs1 --> abs2 --> rep1) f) (rep1 e)
(MAP rep2 l))
[FOLDL_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀l1 l2 f1 f2 e1 e2.
(R1 ===> R2 ===> R1) f1 f2 ∧ R1 e1 e2 ∧
LIST_REL R2 l1 l2 ⇒
R1 (FOLDL f1 e1 l1) (FOLDL f2 e2 l2)
[FOLDR_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀l f e.
FOLDR f e l =
abs2
(FOLDR ((abs1 --> abs2 --> rep2) f) (rep2 e)
(MAP rep1 l))
[FOLDR_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀l1 l2 f1 f2 e1 e2.
(R1 ===> R2 ===> R2) f1 f2 ∧ R2 e1 e2 ∧
LIST_REL R1 l1 l2 ⇒
R2 (FOLDR f1 e1 l1) (FOLDR f2 e2 l2)
[LENGTH_PRS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀l. LENGTH l = LENGTH (MAP rep l)
[LENGTH_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l1 l2. LIST_REL R l1 l2 ⇒ LENGTH l1 = LENGTH l2
[LIST_EQUIV] Theorem
⊢ ∀R. EQUIV R ⇒ EQUIV (LIST_REL R)
[LIST_MAP_I] Theorem
⊢ MAP I = I
[LIST_QUOTIENT] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒ QUOTIENT (LIST_REL R) (MAP abs) (MAP rep)
[LIST_REL_EQ] Theorem
⊢ LIST_REL $= = $=
[LIST_REL_REFL] Theorem
⊢ ∀R. (∀x y. R x y ⇔ R x = R y) ⇒ ∀x. LIST_REL R x x
[LIST_REL_REL] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀r s.
LIST_REL R r s ⇔
LIST_REL R r r ∧ LIST_REL R s s ∧ MAP abs r = MAP abs s
[MAP_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀l f.
MAP f l =
MAP abs2 (MAP ((abs1 --> rep2) f) (MAP rep1 l))
[MAP_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀l1 l2 f1 f2.
(R1 ===> R2) f1 f2 ∧ LIST_REL R1 l1 l2 ⇒
LIST_REL R2 (MAP f1 l1) (MAP f2 l2)
[NIL_PRS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ [] = MAP abs []
[NIL_RSP] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ LIST_REL R [] []
[NULL_PRS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀l. NULL l ⇔ NULL (MAP rep l)
[NULL_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l1 l2. LIST_REL R l1 l2 ⇒ (NULL l1 ⇔ NULL l2)
[REVERSE_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l. REVERSE l = MAP abs (REVERSE (MAP rep l))
[REVERSE_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l1 l2. LIST_REL R l1 l2 ⇒ LIST_REL R (REVERSE l1) (REVERSE l2)
[SOME_EL_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l P. EXISTS P l ⇔ EXISTS ((abs --> I) P) (MAP rep l)
[SOME_EL_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀l1 l2 P1 P2.
(R ===> $<=>) P1 P2 ∧ LIST_REL R l1 l2 ⇒
(EXISTS P1 l1 ⇔ EXISTS P2 l2)
*)
end
HOL 4, Kananaskis-13