Structure satTheory
signature satTheory =
sig
type thm = Thm.thm
(* Theorems *)
val AND_IMP : thm
val AND_INV : thm
val AND_INV2 : thm
val AND_INV_IMP : thm
val EQF_Imp1 : thm
val EQT_Imp1 : thm
val NOT_ELIM2 : thm
val NOT_NOT : thm
val OR_DUAL : thm
val OR_DUAL2 : thm
val OR_DUAL3 : thm
val dc_cond : thm
val dc_conj : thm
val dc_disj : thm
val dc_eq : thm
val dc_imp : thm
val dc_neg : thm
val pth_an1 : thm
val pth_an2 : thm
val pth_ni1 : thm
val pth_ni2 : thm
val pth_nn : thm
val pth_no1 : thm
val pth_no2 : thm
val sat_grammars : type_grammar.grammar * term_grammar.grammar
(*
[bool] Parent theory of "sat"
[AND_IMP] Theorem
⊢ ∀A B C. A ∧ B ⇒ C ⇔ A ⇒ B ⇒ C
[AND_INV] Theorem
⊢ ∀A. ¬A ∧ A ⇔ F
[AND_INV2] Theorem
⊢ (¬A ⇒ F) ⇒ (A ⇒ F) ⇒ F
[AND_INV_IMP] Theorem
⊢ ∀A. A ⇒ ¬A ⇒ F
[EQF_Imp1] Theorem
⊢ ∀b. ¬b ⇒ (b ⇔ F)
[EQT_Imp1] Theorem
⊢ ∀b. b ⇒ (b ⇔ T)
[NOT_ELIM2] Theorem
⊢ ¬A ⇒ F ⇔ A
[NOT_NOT] Theorem
⊢ ∀t. ¬¬t ⇔ t
[OR_DUAL] Theorem
⊢ ¬(A ∨ B) ⇒ F ⇔ ¬A ⇒ ¬B ⇒ F
[OR_DUAL2] Theorem
⊢ ¬(A ∨ B) ⇒ F ⇔ (A ⇒ F) ⇒ ¬B ⇒ F
[OR_DUAL3] Theorem
⊢ ¬(¬A ∨ B) ⇒ F ⇔ A ⇒ ¬B ⇒ F
[dc_cond] Theorem
⊢ (p ⇔ if q then r else s) ⇔
(p ∨ q ∨ ¬s) ∧ (p ∨ ¬r ∨ ¬q) ∧ (p ∨ ¬r ∨ ¬s) ∧ (¬q ∨ r ∨ ¬p) ∧
(q ∨ s ∨ ¬p)
[dc_conj] Theorem
⊢ (p ⇔ q ∧ r) ⇔ (p ∨ ¬q ∨ ¬r) ∧ (q ∨ ¬p) ∧ (r ∨ ¬p)
[dc_disj] Theorem
⊢ (p ⇔ q ∨ r) ⇔ (p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (q ∨ r ∨ ¬p)
[dc_eq] Theorem
⊢ (p ⇔ (q ⇔ r)) ⇔
(p ∨ q ∨ r) ∧ (p ∨ ¬r ∨ ¬q) ∧ (q ∨ ¬r ∨ ¬p) ∧ (r ∨ ¬q ∨ ¬p)
[dc_imp] Theorem
⊢ (p ⇔ q ⇒ r) ⇔ (p ∨ q) ∧ (p ∨ ¬r) ∧ (¬q ∨ r ∨ ¬p)
[dc_neg] Theorem
⊢ (p ⇔ ¬q) ⇔ (p ∨ q) ∧ (¬q ∨ ¬p)
[pth_an1] Theorem
⊢ p ∧ q ⇒ p
[pth_an2] Theorem
⊢ p ∧ q ⇒ q
[pth_ni1] Theorem
⊢ ¬(p ⇒ q) ⇒ p
[pth_ni2] Theorem
⊢ ¬(p ⇒ q) ⇒ ¬q
[pth_nn] Theorem
⊢ ¬¬p ⇒ p
[pth_no1] Theorem
⊢ ¬(p ∨ q) ⇒ ¬p
[pth_no2] Theorem
⊢ ¬(p ∨ q) ⇒ ¬q
*)
end
HOL 4, Kananaskis-13