Structure set_relationTheory


Source File Identifier index Theory binding index

signature set_relationTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val RREFL_EXP_def : thm
    val RRUNIV_def : thm
    val acyclic_def : thm
    val all_choices_def : thm
    val antisym_def : thm
    val chain_def : thm
    val domain_def : thm
    val fchains_def : thm
    val finite_prefixes_def : thm
    val get_min_def : thm
    val irreflexive_def : thm
    val linear_order_def : thm
    val maximal_elements_def : thm
    val minimal_elements_def : thm
    val num_order_def : thm
    val partial_order_def : thm
    val per_def : thm
    val per_restrict_def : thm
    val range_def : thm
    val rcomp_def : thm
    val reflexive_def : thm
    val rel_to_reln_def : thm
    val reln_to_rel_def : thm
    val rrestrict_def : thm
    val strict_def : thm
    val strict_linear_order_def : thm
    val tc_def : thm
    val transitive_def : thm
    val univ_reln_def : thm
    val upper_bounds_def : thm
  
  (*  Theorems  *)
    val IN_MIN_LO : thm
    val REL_RESTRICT_UNIV : thm
    val RREFL_EXP_RSUBSET : thm
    val RREFL_EXP_UNIV : thm
    val WF_has_minimal_path : thm
    val acyclic_SWAP : thm
    val acyclic_WF : thm
    val acyclic_bigunion : thm
    val acyclic_irreflexive : thm
    val acyclic_reln_to_rel_conv : thm
    val acyclic_rrestrict : thm
    val acyclic_subset : thm
    val acyclic_union : thm
    val all_choices_thm : thm
    val antisym_reln_to_rel_conv : thm
    val antisym_subset : thm
    val countable_per : thm
    val domain_mono : thm
    val domain_rrestrict_SUBSET : thm
    val domain_to_rel_conv : thm
    val empty_linear_order : thm
    val empty_strict_linear_order : thm
    val extend_linear_order : thm
    val finite_acyclic_has_maximal : thm
    val finite_acyclic_has_maximal_path : thm
    val finite_acyclic_has_minimal : thm
    val finite_acyclic_has_minimal_path : thm
    val finite_linear_order_has_maximal : thm
    val finite_linear_order_has_minimal : thm
    val finite_prefix_linear_order_has_unique_minimal : thm
    val finite_prefix_po_has_minimal_path : thm
    val finite_prefixes_comp : thm
    val finite_prefixes_inj_image : thm
    val finite_prefixes_range : thm
    val finite_prefixes_subset : thm
    val finite_prefixes_subset_r : thm
    val finite_prefixes_subset_rs : thm
    val finite_prefixes_subset_s : thm
    val finite_prefixes_union : thm
    val finite_strict_linear_order_has_maximal : thm
    val finite_strict_linear_order_has_minimal : thm
    val in_dom_rg : thm
    val in_domain : thm
    val in_range : thm
    val in_rel_to_reln : thm
    val in_rrestrict : thm
    val in_rrestrict_alt : thm
    val irreflexive_reln_to_rel_conv : thm
    val irreflexive_reln_to_rel_conv_UNIV : thm
    val linear_order : thm
    val linear_order_dom_rg : thm
    val linear_order_dom_rng : thm
    val linear_order_in_set : thm
    val linear_order_num_order : thm
    val linear_order_of_countable_po : thm
    val linear_order_refl : thm
    val linear_order_reln_to_rel_conv_UNIV : thm
    val linear_order_restrict : thm
    val linear_order_subset : thm
    val maximal_TC : thm
    val maximal_linear_order : thm
    val maximal_union : thm
    val minimal_TC : thm
    val minimal_elements_SWAP : thm
    val minimal_elements_mono : thm
    val minimal_elements_rrestrict : thm
    val minimal_elements_subset : thm
    val minimal_linear_order : thm
    val minimal_linear_order_unique : thm
    val minimal_union : thm
    val nat_order_iso_thm : thm
    val nth_min_compute : thm
    val nth_min_def : thm
    val nth_min_ind : thm
    val num_order_finite_prefix : thm
    val partial_order_dom_rng : thm
    val partial_order_linear_order : thm
    val partial_order_reln_to_rel_conv : thm
    val partial_order_reln_to_rel_conv_UNIV : thm
    val partial_order_subset : thm
    val per_delete : thm
    val per_restrict_per : thm
    val range_mono : thm
    val range_rrestrict_SUBSET : thm
    val range_to_rel_conv : thm
    val rcomp_to_rel_conv : thm
    val reflexive_reln_to_rel_conv : thm
    val reflexive_reln_to_rel_conv_UNIV : thm
    val rel_to_reln_11 : thm
    val rel_to_reln_IS_UNCURRY : thm
    val rel_to_reln_inv : thm
    val rel_to_reln_swap : thm
    val reln_rel_conv_thms : thm
    val reln_to_rel_11 : thm
    val reln_to_rel_IS_CURRY : thm
    val reln_to_rel_app : thm
    val reln_to_rel_inv : thm
    val rextension : thm
    val rrestrict_SUBSET : thm
    val rrestrict_rrestrict : thm
    val rrestrict_tc : thm
    val rrestrict_to_rel_conv : thm
    val rrestrict_union : thm
    val rtc_ind_right : thm
    val strict_linear_order : thm
    val strict_linear_order_acyclic : thm
    val strict_linear_order_dom_rng : thm
    val strict_linear_order_reln_to_rel_conv_UNIV : thm
    val strict_linear_order_restrict : thm
    val strict_linear_order_union_acyclic : thm
    val strict_partial_order : thm
    val strict_partial_order_acyclic : thm
    val strict_rrestrict : thm
    val strict_to_rel_conv : thm
    val subset_tc : thm
    val tc_SWAP : thm
    val tc_cases : thm
    val tc_cases_left : thm
    val tc_cases_right : thm
    val tc_closure : thm
    val tc_domain_range : thm
    val tc_empty : thm
    val tc_empty_eqn : thm
    val tc_idemp : thm
    val tc_implication : thm
    val tc_ind : thm
    val tc_ind_left : thm
    val tc_ind_right : thm
    val tc_mono : thm
    val tc_rules : thm
    val tc_strongind : thm
    val tc_strongind_left : thm
    val tc_strongind_right : thm
    val tc_to_rel_conv : thm
    val tc_transitive : thm
    val tc_union : thm
    val transitive_reln_to_rel_conv : thm
    val transitive_tc : thm
    val univ_reln_to_rel_conv : thm
    val upper_bounds_lem : thm
    val zorns_lemma : thm
  
  val set_relation_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [pred_set] Parent theory of "set_relation"
   
   [RREFL_EXP_def]  Definition
      
      ⊢ ∀R s. RREFL_EXP R s = R ∪ᵣ (λx y. x = y ∧ x ∉ s)
   
   [RRUNIV_def]  Definition
      
      ⊢ ∀s. RRUNIV s = (λx y. x ∈ s ∧ y ∈ s)
   
   [acyclic_def]  Definition
      
      ⊢ ∀r. acyclic r ⇔ ∀x. (x,x) ∉ tc r
   
   [all_choices_def]  Definition
      
      ⊢ ∀xss.
            all_choices xss =
            {IMAGE choice xss | choice | ∀xs. xs ∈ xss ⇒ choice xs ∈ xs}
   
   [antisym_def]  Definition
      
      ⊢ ∀r. antisym r ⇔ ∀x y. (x,y) ∈ r ∧ (y,x) ∈ r ⇒ x = y
   
   [chain_def]  Definition
      
      ⊢ ∀s r. chain s r ⇔ ∀x y. x ∈ s ∧ y ∈ s ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
   
   [domain_def]  Definition
      
      ⊢ ∀r. domain r = {x | ∃y. (x,y) ∈ r}
   
   [fchains_def]  Definition
      
      ⊢ ∀r.
            fchains r =
            {k |
             chain k r ∧ k ≠ ∅ ∧
             ∀C.
                 chain C r ∧ C ⊆ k ∧ (upper_bounds C r DIFF C) ∩ k ≠ ∅ ⇒
                 CHOICE (upper_bounds C r DIFF C) ∈
                 minimal_elements ((upper_bounds C r DIFF C) ∩ k) r}
   
   [finite_prefixes_def]  Definition
      
      ⊢ ∀r s. finite_prefixes r s ⇔ ∀e. e ∈ s ⇒ FINITE {e' | (e',e) ∈ r}
   
   [get_min_def]  Definition
      
      ⊢ ∀r' s r.
            get_min r' (s,r) =
            (let
               mins = minimal_elements (minimal_elements s r) r'
             in
               if SING mins then SOME (CHOICE mins) else NONE)
   
   [irreflexive_def]  Definition
      
      ⊢ ∀r s. irreflexive r s ⇔ ∀x. x ∈ s ⇒ (x,x) ∉ r
   
   [linear_order_def]  Definition
      
      ⊢ ∀r s.
            linear_order r s ⇔
            domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ antisym r ∧
            ∀x y. x ∈ s ∧ y ∈ s ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
   
   [maximal_elements_def]  Definition
      
      ⊢ ∀xs r.
            maximal_elements xs r =
            {x | x ∈ xs ∧ ∀x'. x' ∈ xs ∧ (x,x') ∈ r ⇒ x = x'}
   
   [minimal_elements_def]  Definition
      
      ⊢ ∀xs r.
            minimal_elements xs r =
            {x | x ∈ xs ∧ ∀x'. x' ∈ xs ∧ (x',x) ∈ r ⇒ x = x'}
   
   [num_order_def]  Definition
      
      ⊢ ∀f s. num_order f s = {(x,y) | x ∈ s ∧ y ∈ s ∧ f x ≤ f y}
   
   [partial_order_def]  Definition
      
      ⊢ ∀r s.
            partial_order r s ⇔
            domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ reflexive r s ∧
            antisym r
   
   [per_def]  Definition
      
      ⊢ ∀xs xss.
            per xs xss ⇔
            BIGUNION xss ⊆ xs ∧ ∅ ∉ xss ∧
            ∀xs1 xs2. xs1 ∈ xss ∧ xs2 ∈ xss ∧ xs1 ≠ xs2 ⇒ DISJOINT xs1 xs2
   
   [per_restrict_def]  Definition
      
      ⊢ ∀xss xs. per_restrict xss xs = {xs' ∩ xs | xs' ∈ xss} DELETE ∅
   
   [range_def]  Definition
      
      ⊢ ∀r. range r = {y | ∃x. (x,y) ∈ r}
   
   [rcomp_def]  Definition
      
      ⊢ ∀r1 r2. r1 OO r2 = {(x,y) | ∃z. (x,z) ∈ r1 ∧ (z,y) ∈ r2}
   
   [reflexive_def]  Definition
      
      ⊢ ∀r s. reflexive r s ⇔ ∀x. x ∈ s ⇒ (x,x) ∈ r
   
   [rel_to_reln_def]  Definition
      
      ⊢ ∀R. rel_to_reln R = {(x,y) | R x y}
   
   [reln_to_rel_def]  Definition
      
      ⊢ ∀r. reln_to_rel r = (λx y. (x,y) ∈ r)
   
   [rrestrict_def]  Definition
      
      ⊢ ∀r s. rrestrict r s = {(x,y) | (x,y) ∈ r ∧ x ∈ s ∧ y ∈ s}
   
   [strict_def]  Definition
      
      ⊢ ∀r. strict r = {(x,y) | (x,y) ∈ r ∧ x ≠ y}
   
   [strict_linear_order_def]  Definition
      
      ⊢ ∀r s.
            strict_linear_order r s ⇔
            domain r ⊆ s ∧ range r ⊆ s ∧ transitive r ∧ (∀x. (x,x) ∉ r) ∧
            ∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ (x,y) ∈ r ∨ (y,x) ∈ r
   
   [tc_def]  Definition
      
      ⊢ tc =
        (λr a0.
             ∀tc'.
                 (∀a0.
                      (∃x y. a0 = (x,y) ∧ r (x,y)) ∨
                      (∃x y. a0 = (x,y) ∧ ∃z. tc' (x,z) ∧ tc' (z,y)) ⇒
                      tc' a0) ⇒
                 tc' a0)
   
   [transitive_def]  Definition
      
      ⊢ ∀r. transitive r ⇔ ∀x y z. (x,y) ∈ r ∧ (y,z) ∈ r ⇒ (x,z) ∈ r
   
   [univ_reln_def]  Definition
      
      ⊢ ∀xs. univ_reln xs = {(x1,x2) | x1 ∈ xs ∧ x2 ∈ xs}
   
   [upper_bounds_def]  Definition
      
      ⊢ ∀s r. upper_bounds s r = {x | x ∈ range r ∧ ∀y. y ∈ s ⇒ (y,x) ∈ r}
   
   [IN_MIN_LO]  Theorem
      
      ⊢ x ∈ X ⇒ linear_order lo X ⇒ y ∈ minimal_elements X lo ⇒ (y,x) ∈ lo
   
   [REL_RESTRICT_UNIV]  Theorem
      
      ⊢ REL_RESTRICT R 𝕌(:α) = R
   
   [RREFL_EXP_RSUBSET]  Theorem
      
      ⊢ R ⊆ᵣ RREFL_EXP R s
   
   [RREFL_EXP_UNIV]  Theorem
      
      ⊢ RREFL_EXP R 𝕌(:α) = R
   
   [WF_has_minimal_path]  Theorem
      
      ⊢ WF (reln_to_rel r) ⇒
        x ∈ s ⇒
        ∃y. y ∈ minimal_elements s r ∧ ((y,x) ∈ tc r ∨ y = x)
   
   [acyclic_SWAP]  Theorem
      
      ⊢ acyclic (IMAGE SWAP r) ⇔ acyclic r
   
   [acyclic_WF]  Theorem
      
      ⊢ FINITE s ∧ acyclic r ∧ domain r ⊆ s ∧ range r ⊆ s ⇒
        WF (reln_to_rel r)
   
   [acyclic_bigunion]  Theorem
      
      ⊢ ∀rs.
            (∀r r'.
                 r ∈ rs ∧ r' ∈ rs ∧ r ≠ r' ⇒
                 DISJOINT (domain r ∪ range r) (domain r' ∪ range r')) ∧
            (∀r. r ∈ rs ⇒ acyclic r) ⇒
            acyclic (BIGUNION rs)
   
   [acyclic_irreflexive]  Theorem
      
      ⊢ ∀r x. acyclic r ⇒ (x,x) ∉ r
   
   [acyclic_reln_to_rel_conv]  Theorem
      
      ⊢ acyclic r ⇔ irreflexive (reln_to_rel r)⁺
   
   [acyclic_rrestrict]  Theorem
      
      ⊢ ∀r s. acyclic r ⇒ acyclic (rrestrict r s)
   
   [acyclic_subset]  Theorem
      
      ⊢ ∀r1 r2. acyclic r1 ∧ r2 ⊆ r1 ⇒ acyclic r2
   
   [acyclic_union]  Theorem
      
      ⊢ ∀r r'.
            DISJOINT (domain r ∪ range r) (domain r' ∪ range r') ∧
            acyclic r ∧ acyclic r' ⇒
            acyclic (r ∪ r')
   
   [all_choices_thm]  Theorem
      
      ⊢ ∀x s y. x ∈ all_choices s ∧ y ∈ x ⇒ ∃z. z ∈ s ∧ y ∈ z
   
   [antisym_reln_to_rel_conv]  Theorem
      
      ⊢ antisym r ⇔ antisymmetric (reln_to_rel r)
   
   [antisym_subset]  Theorem
      
      ⊢ antisym t ⇒ s ⊆ t ⇒ antisym s
   
   [countable_per]  Theorem
      
      ⊢ ∀xs xss. countable xs ∧ per xs xss ⇒ countable xss
   
   [domain_mono]  Theorem
      
      ⊢ r ⊆ r' ⇒ domain r ⊆ domain r'
   
   [domain_rrestrict_SUBSET]  Theorem
      
      ⊢ domain (rrestrict r s) ⊆ s
   
   [domain_to_rel_conv]  Theorem
      
      ⊢ domain r = RDOM (reln_to_rel r)
   
   [empty_linear_order]  Theorem
      
      ⊢ ∀r. linear_order r ∅ ⇔ r = ∅
   
   [empty_strict_linear_order]  Theorem
      
      ⊢ ∀r. strict_linear_order r ∅ ⇔ r = ∅
   
   [extend_linear_order]  Theorem
      
      ⊢ ∀r s x.
            x ∉ s ∧ linear_order r s ⇒
            linear_order (r ∪ {(y,x) | y | y ∈ s ∪ {x}}) (s ∪ {x})
   
   [finite_acyclic_has_maximal]  Theorem
      
      ⊢ ∀s. FINITE s ⇒ s ≠ ∅ ⇒ ∀r. acyclic r ⇒ ∃x. x ∈ maximal_elements s r
   
   [finite_acyclic_has_maximal_path]  Theorem
      
      ⊢ ∀s r x.
            FINITE s ∧ acyclic r ∧ x ∈ s ∧ x ∉ maximal_elements s r ⇒
            ∃y. y ∈ maximal_elements s r ∧ (x,y) ∈ tc r
   
   [finite_acyclic_has_minimal]  Theorem
      
      ⊢ ∀s. FINITE s ⇒ s ≠ ∅ ⇒ ∀r. acyclic r ⇒ ∃x. x ∈ minimal_elements s r
   
   [finite_acyclic_has_minimal_path]  Theorem
      
      ⊢ ∀s r x.
            FINITE s ∧ acyclic r ∧ x ∈ s ∧ x ∉ minimal_elements s r ⇒
            ∃y. y ∈ minimal_elements s r ∧ (y,x) ∈ tc r
   
   [finite_linear_order_has_maximal]  Theorem
      
      ⊢ ∀s r.
            FINITE s ∧ linear_order r s ∧ s ≠ ∅ ⇒
            ∃x. x ∈ maximal_elements s r
   
   [finite_linear_order_has_minimal]  Theorem
      
      ⊢ ∀s r.
            FINITE s ∧ linear_order r s ∧ s ≠ ∅ ⇒
            ∃x. x ∈ minimal_elements s r
   
   [finite_prefix_linear_order_has_unique_minimal]  Theorem
      
      ⊢ ∀r s s'.
            linear_order r s ∧ finite_prefixes r s ∧ x ∈ s' ∧ s' ⊆ s ⇒
            SING (minimal_elements s' r)
   
   [finite_prefix_po_has_minimal_path]  Theorem
      
      ⊢ ∀r s x s'.
            partial_order r s ∧ finite_prefixes r s ∧
            x ∉ minimal_elements s' r ∧ x ∈ s' ∧ s' ⊆ s ⇒
            ∃x'. x' ∈ minimal_elements s' r ∧ (x',x) ∈ r
   
   [finite_prefixes_comp]  Theorem
      
      ⊢ ∀r1 r2 s1 s2.
            finite_prefixes r1 s1 ∧ finite_prefixes r2 s2 ∧
            {x | ∃y. y ∈ s2 ∧ (x,y) ∈ r2} ⊆ s1 ⇒
            finite_prefixes (r1 OO r2) s2
   
   [finite_prefixes_inj_image]  Theorem
      
      ⊢ ∀f r s.
            (∀x y. f x = f y ⇒ x = y) ∧ finite_prefixes r s ⇒
            finite_prefixes {(f x,f y) | (x,y) ∈ r} (IMAGE f s)
   
   [finite_prefixes_range]  Theorem
      
      ⊢ ∀r s t.
            finite_prefixes r s ∧ DISJOINT t (range r) ⇒
            finite_prefixes r (s ∪ t)
   
   [finite_prefixes_subset]  Theorem
      
      ⊢ ∀r s s'.
            finite_prefixes r s ∧ s' ⊆ s ⇒
            finite_prefixes r s' ∧ finite_prefixes (rrestrict r s') s'
   
   [finite_prefixes_subset_r]  Theorem
      
      ⊢ ∀r r' s. finite_prefixes r s ∧ r' ⊆ r ⇒ finite_prefixes r' s
   
   [finite_prefixes_subset_rs]  Theorem
      
      ⊢ ∀r s r' s'.
            finite_prefixes r s ⇒ r' ⊆ r ⇒ s' ⊆ s ⇒ finite_prefixes r' s'
   
   [finite_prefixes_subset_s]  Theorem
      
      ⊢ ∀r s s'. finite_prefixes r s ∧ s' ⊆ s ⇒ finite_prefixes r s'
   
   [finite_prefixes_union]  Theorem
      
      ⊢ ∀r1 r2 s1 s2.
            finite_prefixes r1 s1 ∧ finite_prefixes r2 s2 ⇒
            finite_prefixes (r1 ∪ r2) (s1 ∩ s2)
   
   [finite_strict_linear_order_has_maximal]  Theorem
      
      ⊢ ∀s r.
            FINITE s ∧ strict_linear_order r s ∧ s ≠ ∅ ⇒
            ∃x. x ∈ maximal_elements s r
   
   [finite_strict_linear_order_has_minimal]  Theorem
      
      ⊢ ∀s r.
            FINITE s ∧ strict_linear_order r s ∧ s ≠ ∅ ⇒
            ∃x. x ∈ minimal_elements s r
   
   [in_dom_rg]  Theorem
      
      ⊢ (x,y) ∈ r ⇒ x ∈ domain r ∧ y ∈ range r
   
   [in_domain]  Theorem
      
      ⊢ ∀x r. x ∈ domain r ⇔ ∃y. (x,y) ∈ r
   
   [in_range]  Theorem
      
      ⊢ ∀y r. y ∈ range r ⇔ ∃x. (x,y) ∈ r
   
   [in_rel_to_reln]  Theorem
      
      ⊢ xy ∈ rel_to_reln R ⇔ R (FST xy) (SND xy)
   
   [in_rrestrict]  Theorem
      
      ⊢ ∀x y r s. (x,y) ∈ rrestrict r s ⇔ (x,y) ∈ r ∧ x ∈ s ∧ y ∈ s
   
   [in_rrestrict_alt]  Theorem
      
      ⊢ x ∈ rrestrict r s ⇔ x ∈ r ∧ FST x ∈ s ∧ SND x ∈ s
   
   [irreflexive_reln_to_rel_conv]  Theorem
      
      ⊢ irreflexive r s ⇔ irreflexive (REL_RESTRICT (reln_to_rel r) s)
   
   [irreflexive_reln_to_rel_conv_UNIV]  Theorem
      
      ⊢ irreflexive r 𝕌(:α) ⇔ irreflexive (reln_to_rel r)
   
   [linear_order]  Theorem
      
      ⊢ ∀r s.
            strict_linear_order r s ⇒ linear_order (r ∪ {(x,x) | x ∈ s}) s
   
   [linear_order_dom_rg]  Theorem
      
      ⊢ linear_order lo X ⇒ domain lo ∪ range lo = X
   
   [linear_order_dom_rng]  Theorem
      
      ⊢ ∀r s x y. (x,y) ∈ r ∧ linear_order r s ⇒ x ∈ s ∧ y ∈ s
   
   [linear_order_in_set]  Theorem
      
      ⊢ linear_order lo X ⇒ (x,y) ∈ lo ⇒ x ∈ X ∧ y ∈ X
   
   [linear_order_num_order]  Theorem
      
      ⊢ ∀f s t. INJ f s t ⇒ linear_order (num_order f s) s
   
   [linear_order_of_countable_po]  Theorem
      
      ⊢ ∀r s.
            countable s ∧ partial_order r s ∧ finite_prefixes r s ⇒
            ∃r'. linear_order r' s ∧ finite_prefixes r' s ∧ r ⊆ r'
   
   [linear_order_refl]  Theorem
      
      ⊢ linear_order lo X ⇒ x ∈ X ⇒ (x,x) ∈ lo
   
   [linear_order_reln_to_rel_conv_UNIV]  Theorem
      
      ⊢ linear_order r 𝕌(:α) ⇔ WeakLinearOrder (reln_to_rel r)
   
   [linear_order_restrict]  Theorem
      
      ⊢ ∀s r s'. linear_order r s ⇒ linear_order (rrestrict r s') (s ∩ s')
   
   [linear_order_subset]  Theorem
      
      ⊢ ∀r s s'.
            linear_order r s ∧ s' ⊆ s ⇒ linear_order (rrestrict r s') s'
   
   [maximal_TC]  Theorem
      
      ⊢ ∀s r.
            domain r ⊆ s ∧ range r ⊆ s ⇒
            maximal_elements s (tc r) = maximal_elements s r
   
   [maximal_linear_order]  Theorem
      
      ⊢ ∀s r x y.
            y ∈ s ∧ linear_order r s ∧ x ∈ maximal_elements s r ⇒ (y,x) ∈ r
   
   [maximal_union]  Theorem
      
      ⊢ ∀e s r1 r2.
            e ∈ maximal_elements s (r1 ∪ r2) ⇒
            e ∈ maximal_elements s r1 ∧ e ∈ maximal_elements s r2
   
   [minimal_TC]  Theorem
      
      ⊢ ∀s r.
            domain r ⊆ s ∧ range r ⊆ s ⇒
            minimal_elements s (tc r) = minimal_elements s r
   
   [minimal_elements_SWAP]  Theorem
      
      ⊢ minimal_elements xs (IMAGE SWAP r) = maximal_elements xs r
   
   [minimal_elements_mono]  Theorem
      
      ⊢ r ⊆ r' ⇒ minimal_elements xs r' ⊆ minimal_elements xs r
   
   [minimal_elements_rrestrict]  Theorem
      
      ⊢ minimal_elements xs (rrestrict r xs) = minimal_elements xs r
   
   [minimal_elements_subset]  Theorem
      
      ⊢ minimal_elements s lo ⊆ s
   
   [minimal_linear_order]  Theorem
      
      ⊢ ∀s r x y.
            y ∈ s ∧ linear_order r s ∧ x ∈ minimal_elements s r ⇒ (x,y) ∈ r
   
   [minimal_linear_order_unique]  Theorem
      
      ⊢ ∀r s s' x y.
            linear_order r s ∧ x ∈ minimal_elements s' r ∧
            y ∈ minimal_elements s' r ∧ s' ⊆ s ⇒
            x = y
   
   [minimal_union]  Theorem
      
      ⊢ ∀e s r1 r2.
            e ∈ minimal_elements s (r1 ∪ r2) ⇒
            e ∈ minimal_elements s r1 ∧ e ∈ minimal_elements s r2
   
   [nat_order_iso_thm]  Theorem
      
      ⊢ ∀f s.
            (∀n m. f m = f n ∧ f m ≠ NONE ⇒ m = n) ∧
            (∀x. x ∈ s ⇒ ∃m. f m = SOME x) ∧ (∀m x. f m = SOME x ⇒ x ∈ s) ⇒
            linear_order
              {(x,y) | (∃m n. m ≤ n ∧ f m = SOME x ∧ f n = SOME y)} s ∧
            finite_prefixes
              {(x,y) | (∃m n. m ≤ n ∧ f m = SOME x ∧ f n = SOME y)} s
   
   [nth_min_compute]  Theorem
      
      ⊢ (∀s r' r. nth_min r' (s,r) 0 = get_min r' (s,r)) ∧
        (∀s r' r n.
             nth_min r' (s,r) (NUMERAL (BIT1 n)) =
             (let
                min = get_min r' (s,r)
              in
                if min = NONE then NONE
                else nth_min r' (s DELETE THE min,r) (NUMERAL (BIT1 n) − 1))) ∧
        ∀s r' r n.
            nth_min r' (s,r) (NUMERAL (BIT2 n)) =
            (let
               min = get_min r' (s,r)
             in
               if min = NONE then NONE
               else nth_min r' (s DELETE THE min,r) (NUMERAL (BIT1 n)))
   
   [nth_min_def]  Theorem
      
      ⊢ (∀s r' r. nth_min r' (s,r) 0 = get_min r' (s,r)) ∧
        ∀s r' r n.
            nth_min r' (s,r) (SUC n) =
            (let
               min = get_min r' (s,r)
             in
               if min = NONE then NONE
               else nth_min r' (s DELETE THE min,r) n)
   
   [nth_min_ind]  Theorem
      
      ⊢ ∀P.
            (∀r' s r. P r' (s,r) 0) ∧
            (∀r' s r n.
                 (∀min.
                      min = get_min r' (s,r) ∧ min ≠ NONE ⇒
                      P r' (s DELETE THE min,r) n) ⇒
                 P r' (s,r) (SUC n)) ⇒
            ∀v v1 v2 v3. P v (v1,v2) v3
   
   [num_order_finite_prefix]  Theorem
      
      ⊢ ∀f s t. INJ f s t ⇒ finite_prefixes (num_order f s) s
   
   [partial_order_dom_rng]  Theorem
      
      ⊢ ∀r s x y. (x,y) ∈ r ∧ partial_order r s ⇒ x ∈ s ∧ y ∈ s
   
   [partial_order_linear_order]  Theorem
      
      ⊢ ∀r s. linear_order r s ⇒ partial_order r s
   
   [partial_order_reln_to_rel_conv]  Theorem
      
      ⊢ partial_order r s ⇔
        reln_to_rel r ⊆ᵣ RRUNIV s ∧ WeakOrder (RREFL_EXP (reln_to_rel r) s)
   
   [partial_order_reln_to_rel_conv_UNIV]  Theorem
      
      ⊢ partial_order r 𝕌(:α) ⇔ WeakOrder (reln_to_rel r)
   
   [partial_order_subset]  Theorem
      
      ⊢ ∀r s s'.
            partial_order r s ∧ s' ⊆ s ⇒ partial_order (rrestrict r s') s'
   
   [per_delete]  Theorem
      
      ⊢ ∀xs xss e.
            per xs xss ⇒
            per (xs DELETE e)
              {es | es ∈ IMAGE (λes. es DELETE e) xss ∧ es ≠ ∅}
   
   [per_restrict_per]  Theorem
      
      ⊢ ∀r s s'. per s r ⇒ per s' (per_restrict r s')
   
   [range_mono]  Theorem
      
      ⊢ r ⊆ r' ⇒ range r ⊆ range r'
   
   [range_rrestrict_SUBSET]  Theorem
      
      ⊢ range (rrestrict r s) ⊆ s
   
   [range_to_rel_conv]  Theorem
      
      ⊢ range r = RRANGE (reln_to_rel r)
   
   [rcomp_to_rel_conv]  Theorem
      
      ⊢ r1 OO r2 = rel_to_reln (reln_to_rel r2 ∘ᵣ reln_to_rel r1)
   
   [reflexive_reln_to_rel_conv]  Theorem
      
      ⊢ reflexive r s ⇔ reflexive (RREFL_EXP (reln_to_rel r) s)
   
   [reflexive_reln_to_rel_conv_UNIV]  Theorem
      
      ⊢ reflexive r 𝕌(:α) ⇔ reflexive (reln_to_rel r)
   
   [rel_to_reln_11]  Theorem
      
      ⊢ rel_to_reln R1 = rel_to_reln R2 ⇔ R1 = R2
   
   [rel_to_reln_IS_UNCURRY]  Theorem
      
      ⊢ rel_to_reln = UNCURRY
   
   [rel_to_reln_inv]  Theorem
      
      ⊢ reln_to_rel (rel_to_reln R) = R
   
   [rel_to_reln_swap]  Theorem
      
      ⊢ r = rel_to_reln R ⇔ reln_to_rel r = R
   
   [reln_rel_conv_thms]  Theorem
      
      ⊢ ((xy ∈ rel_to_reln R ⇔ R (FST xy) (SND xy)) ∧
         (reln_to_rel r x y ⇔ (x,y) ∈ r) ∧
         reln_to_rel (rel_to_reln R) = R ∧
         rel_to_reln (reln_to_rel r) = r ∧
         (reln_to_rel r1 = reln_to_rel r2 ⇔ r1 = r2) ∧
         (rel_to_reln R1 = rel_to_reln R2 ⇔ R1 = R2)) ∧
        RREFL_EXP R 𝕌(:α) = R ∧ REL_RESTRICT R 𝕌(:α) = R ∧
        domain r = RDOM (reln_to_rel r) ∧
        range r = RRANGE (reln_to_rel r) ∧
        strict r = rel_to_reln (STRORD (reln_to_rel r)) ∧
        rrestrict r s = rel_to_reln (REL_RESTRICT (reln_to_rel r) s) ∧
        r1 OO r2 = rel_to_reln (reln_to_rel r2 ∘ᵣ reln_to_rel r1) ∧
        univ_reln s = rel_to_reln (RRUNIV s) ∧
        tc r = rel_to_reln (reln_to_rel r)⁺ ∧
        (acyclic r ⇔ irreflexive (reln_to_rel r)⁺) ∧
        (irreflexive r s ⇔ irreflexive (REL_RESTRICT (reln_to_rel r) s)) ∧
        (reflexive r s ⇔ reflexive (RREFL_EXP (reln_to_rel r) s)) ∧
        (transitive r ⇔ transitive (reln_to_rel r)) ∧
        (antisym r ⇔ antisymmetric (reln_to_rel r)) ∧
        (partial_order r 𝕌(:α) ⇔ WeakOrder (reln_to_rel r)) ∧
        (linear_order r 𝕌(:α) ⇔ WeakLinearOrder (reln_to_rel r)) ∧
        (strict_linear_order r 𝕌(:α) ⇔ StrongLinearOrder (reln_to_rel r))
   
   [reln_to_rel_11]  Theorem
      
      ⊢ reln_to_rel r1 = reln_to_rel r2 ⇔ r1 = r2
   
   [reln_to_rel_IS_CURRY]  Theorem
      
      ⊢ reln_to_rel = CURRY
   
   [reln_to_rel_app]  Theorem
      
      ⊢ reln_to_rel r x y ⇔ (x,y) ∈ r
   
   [reln_to_rel_inv]  Theorem
      
      ⊢ rel_to_reln (reln_to_rel r) = r
   
   [rextension]  Theorem
      
      ⊢ ∀s t. s = t ⇔ ∀x y. (x,y) ∈ s ⇔ (x,y) ∈ t
   
   [rrestrict_SUBSET]  Theorem
      
      ⊢ rrestrict r s ⊆ r
   
   [rrestrict_rrestrict]  Theorem
      
      ⊢ ∀r x y. rrestrict (rrestrict r x) y = rrestrict r (x ∩ y)
   
   [rrestrict_tc]  Theorem
      
      ⊢ ∀e e'. (e,e') ∈ tc (rrestrict r x) ⇒ (e,e') ∈ tc r
   
   [rrestrict_to_rel_conv]  Theorem
      
      ⊢ rrestrict r s = rel_to_reln (REL_RESTRICT (reln_to_rel r) s)
   
   [rrestrict_union]  Theorem
      
      ⊢ ∀r1 r2 s. rrestrict (r1 ∪ r2) s = rrestrict r1 s ∪ rrestrict r2 s
   
   [rtc_ind_right]  Theorem
      
      ⊢ ∀r tc'.
            (∀x. x ∈ domain r ∨ x ∈ range r ⇒ tc' x x) ∧
            (∀x y. (∃z. tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
            ∀x y. (x,y) ∈ tc r ⇒ tc' x y
   
   [strict_linear_order]  Theorem
      
      ⊢ ∀r s. linear_order r s ⇒ strict_linear_order (strict r) s
   
   [strict_linear_order_acyclic]  Theorem
      
      ⊢ ∀r s. strict_linear_order r s ⇒ acyclic r
   
   [strict_linear_order_dom_rng]  Theorem
      
      ⊢ ∀r s x y. (x,y) ∈ r ∧ strict_linear_order r s ⇒ x ∈ s ∧ y ∈ s
   
   [strict_linear_order_reln_to_rel_conv_UNIV]  Theorem
      
      ⊢ strict_linear_order r 𝕌(:α) ⇔ StrongLinearOrder (reln_to_rel r)
   
   [strict_linear_order_restrict]  Theorem
      
      ⊢ ∀s r s'.
            strict_linear_order r s ⇒
            strict_linear_order (rrestrict r s') (s ∩ s')
   
   [strict_linear_order_union_acyclic]  Theorem
      
      ⊢ ∀r1 r2 s.
            strict_linear_order r1 s ∧ domain r2 ∪ range r2 ⊆ s ⇒
            (acyclic (r1 ∪ r2) ⇔ r2 ⊆ r1)
   
   [strict_partial_order]  Theorem
      
      ⊢ ∀r s.
            partial_order r s ⇒
            domain (strict r) ⊆ s ∧ range (strict r) ⊆ s ∧
            transitive (strict r) ∧ antisym (strict r)
   
   [strict_partial_order_acyclic]  Theorem
      
      ⊢ ∀r s. partial_order r s ⇒ acyclic (strict r)
   
   [strict_rrestrict]  Theorem
      
      ⊢ ∀r s. strict (rrestrict r s) = rrestrict (strict r) s
   
   [strict_to_rel_conv]  Theorem
      
      ⊢ strict r = rel_to_reln (STRORD (reln_to_rel r))
   
   [subset_tc]  Theorem
      
      ⊢ r ⊆ tc r
   
   [tc_SWAP]  Theorem
      
      ⊢ tc (IMAGE SWAP r) = IMAGE SWAP (tc r)
   
   [tc_cases]  Theorem
      
      ⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ tc r ∧ (z,y) ∈ tc r
   
   [tc_cases_left]  Theorem
      
      ⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ r ∧ (z,y) ∈ tc r
   
   [tc_cases_right]  Theorem
      
      ⊢ ∀r x y. (x,y) ∈ tc r ⇔ (x,y) ∈ r ∨ ∃z. (x,z) ∈ tc r ∧ (z,y) ∈ r
   
   [tc_closure]  Theorem
      
      ⊢ r ⊆ tc s ⇒ tc r ⊆ tc s
   
   [tc_domain_range]  Theorem
      
      ⊢ ∀x y. (x,y) ∈ tc r ⇒ x ∈ domain r ∧ y ∈ range r
   
   [tc_empty]  Theorem
      
      ⊢ ∀x y. (x,y) ∉ tc ∅
   
   [tc_empty_eqn]  Theorem
      
      ⊢ tc ∅ = ∅
   
   [tc_idemp]  Theorem
      
      ⊢ tc (tc r) = tc r
   
   [tc_implication]  Theorem
      
      ⊢ ∀r1 r2.
            (∀x y. (x,y) ∈ r1 ⇒ (x,y) ∈ r2) ⇒
            ∀x y. (x,y) ∈ tc r1 ⇒ (x,y) ∈ tc r2
   
   [tc_ind]  Theorem
      
      ⊢ ∀r tc'.
            (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
            (∀x y. (∃z. tc' x z ∧ tc' z y) ⇒ tc' x y) ⇒
            ∀x y. (x,y) ∈ tc r ⇒ tc' x y
   
   [tc_ind_left]  Theorem
      
      ⊢ ∀r tc'.
            (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
            (∀x y. (∃z. (x,z) ∈ r ∧ tc' z y) ⇒ tc' x y) ⇒
            ∀x y. (x,y) ∈ tc r ⇒ tc' x y
   
   [tc_ind_right]  Theorem
      
      ⊢ ∀r tc'.
            (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
            (∀x y. (∃z. tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
            ∀x y. (x,y) ∈ tc r ⇒ tc' x y
   
   [tc_mono]  Theorem
      
      ⊢ r ⊆ s ⇒ tc r ⊆ tc s
   
   [tc_rules]  Theorem
      
      ⊢ ∀r.
            (∀x y. (x,y) ∈ r ⇒ (x,y) ∈ tc r) ∧
            ∀x y. (∃z. (x,z) ∈ tc r ∧ (z,y) ∈ tc r) ⇒ (x,y) ∈ tc r
   
   [tc_strongind]  Theorem
      
      ⊢ ∀r tc'.
            (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
            (∀x y.
                 (∃z. (x,z) ∈ tc r ∧ tc' x z ∧ (z,y) ∈ tc r ∧ tc' z y) ⇒
                 tc' x y) ⇒
            ∀x y. (x,y) ∈ tc r ⇒ tc' x y
   
   [tc_strongind_left]  Theorem
      
      ⊢ ∀r tc'.
            (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
            (∀x y. (∃z. (x,z) ∈ r ∧ (z,y) ∈ tc r ∧ tc' z y) ⇒ tc' x y) ⇒
            ∀x y. (x,y) ∈ tc r ⇒ tc' x y
   
   [tc_strongind_right]  Theorem
      
      ⊢ ∀r tc'.
            (∀x y. (x,y) ∈ r ⇒ tc' x y) ∧
            (∀x y. (∃z. (x,z) ∈ tc r ∧ tc' x z ∧ (z,y) ∈ r) ⇒ tc' x y) ⇒
            ∀x y. (x,y) ∈ tc r ⇒ tc' x y
   
   [tc_to_rel_conv]  Theorem
      
      ⊢ tc r = rel_to_reln (reln_to_rel r)⁺
   
   [tc_transitive]  Theorem
      
      ⊢ ∀r. transitive (tc r)
   
   [tc_union]  Theorem
      
      ⊢ ∀x y. (x,y) ∈ tc r1 ⇒ ∀r2. (x,y) ∈ tc (r1 ∪ r2)
   
   [transitive_reln_to_rel_conv]  Theorem
      
      ⊢ transitive r ⇔ transitive (reln_to_rel r)
   
   [transitive_tc]  Theorem
      
      ⊢ ∀r. transitive r ⇒ tc r = r
   
   [univ_reln_to_rel_conv]  Theorem
      
      ⊢ univ_reln s = rel_to_reln (RRUNIV s)
   
   [upper_bounds_lem]  Theorem
      
      ⊢ ∀r s x1 x2.
            transitive r ∧ x1 ∈ upper_bounds s r ∧ (x1,x2) ∈ r ⇒
            x2 ∈ upper_bounds s r
   
   [zorns_lemma]  Theorem
      
      ⊢ ∀r s.
            s ≠ ∅ ∧ partial_order r s ∧
            (∀t. chain t r ⇒ upper_bounds t r ≠ ∅) ⇒
            ∃x. x ∈ maximal_elements s r
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-13