Structure transferTheory
signature transferTheory =
sig
type thm = Thm.thm
(* Definitions *)
val FUN_REL_def : thm
val PAIR_REL_def : thm
val bi_unique_def : thm
val bitotal_def : thm
val left_unique_def : thm
val right_unique_def : thm
val surj_def : thm
val total_def : thm
(* Theorems *)
val FUN_REL_ABS : thm
val FUN_REL_COMB : thm
val FUN_REL_EQ2 : thm
val transfer_grammars : type_grammar.grammar * term_grammar.grammar
(*
[indexedLists] Parent theory of "transfer"
[patternMatches] Parent theory of "transfer"
[FUN_REL_def] Definition
⊢ ∀AB CD f g. (AB ===> CD) f g ⇔ ∀a b. AB a b ⇒ CD (f a) (g b)
[PAIR_REL_def] Definition
⊢ ∀AB CD a c b d. (AB ### CD) (a,c) (b,d) ⇔ AB a b ∧ CD c d
[bi_unique_def] Definition
⊢ ∀R. bi_unique R ⇔ left_unique R ∧ right_unique R
[bitotal_def] Definition
⊢ ∀R. bitotal R ⇔ total R ∧ surj R
[left_unique_def] Definition
⊢ ∀R. left_unique R ⇔ ∀a1 a2 b. R a1 b ∧ R a2 b ⇒ a1 = a2
[right_unique_def] Definition
⊢ ∀R. right_unique R ⇔ ∀a b1 b2. R a b1 ∧ R a b2 ⇒ b1 = b2
[surj_def] Definition
⊢ ∀R. surj R ⇔ ∀y. ∃x. R x y
[total_def] Definition
⊢ ∀R. total R ⇔ ∀x. ∃y. R x y
[FUN_REL_ABS] Theorem
⊢ (∀a b. AB a b ⇒ CD (f a) (g b)) ⇒ (AB ===> CD) (λa. f a) (λb. g b)
[FUN_REL_COMB] Theorem
⊢ (AB ===> CD) f g ∧ AB a b ⇒ CD (f a) (g b)
[FUN_REL_EQ2] Theorem
⊢ $= ===> $= = $=
*)
end
HOL 4, Kananaskis-13