Structure ucordTheory
signature ucordTheory =
sig
type thm = Thm.thm
(* Definitions *)
val omega1_def : thm
(* Theorems *)
val Unum_cardle_ucinf : thm
val Unum_cardlt_ucinf : thm
val omega1_not_countable : thm
val ucinf_uncountable : thm
val ucord_sup_exists_lemma : thm
val x_lt_omega1_countable : thm
val ucord_grammars : type_grammar.grammar * term_grammar.grammar
(*
[ordinal] Parent theory of "ucord"
[omega1_def] Definition
⊢ ω₁ = sup {a | countableOrd a}
[Unum_cardle_ucinf] Theorem
⊢ 𝕌(:num) ≼ 𝕌(:num + α + (num -> bool))
[Unum_cardlt_ucinf] Theorem
⊢ 𝕌(:num) ≺ 𝕌(:num + α + (num -> bool))
[omega1_not_countable] Theorem
⊢ ¬countableOrd ω₁
[ucinf_uncountable] Theorem
⊢ ¬COUNTABLE 𝕌(:num + α + (num -> bool))
[ucord_sup_exists_lemma] Theorem
⊢ {a | countableOrd a} ≼ 𝕌(:num + α + (num -> bool))
[x_lt_omega1_countable] Theorem
⊢ x < ω₁ ⇔ countableOrd x
*)
end
HOL 4, Kananaskis-13