Theory "marker"

Parents     bool

Signature

Constant Type
:- :ind -> bool -> bool
AC :bool -> bool -> bool
Abbrev :bool -> bool
Cong :bool -> bool
Exclude :α -> bool
IfCases :bool
Req0 :bool
ReqD :bool
stmarker :α -> α
unint :α -> α

Definitions

unint_def
⊢ ∀x. unint x = x
stmarker_def
⊢ ∀x. stmarker x = x
ReqD_def
⊢ ReqD ⇔ T
Req0_def
⊢ Req0 ⇔ T
label_def
⊢ ∀lab argument. (lab :- argument) ⇔ argument
IfCases_def
⊢ IfCases ⇔ T
Exclude_def
⊢ ∀x. Exclude x ⇔ T
Cong_def
⊢ ∀x. Cong x ⇔ x
AC_DEF
⊢ ∀b1 b2. AC b1 b2 ⇔ b1 ∧ b2
Abbrev_def
⊢ ∀x. Abbrev x ⇔ x


Theorems

move_right_disj
⊢ ∀p q m.
      (stmarker m ∨ p ⇔ p ∨ stmarker m) ∧
      (p ∨ q ∨ stmarker m ⇔ (p ∨ q) ∨ stmarker m) ∧
      ((p ∨ stmarker m) ∨ q ⇔ (p ∨ q) ∨ stmarker m)
move_right_conj
⊢ ∀p q m.
      (stmarker m ∧ p ⇔ p ∧ stmarker m) ∧
      (p ∧ q ∧ stmarker m ⇔ (p ∧ q) ∧ stmarker m) ∧
      ((p ∧ stmarker m) ∧ q ⇔ (p ∧ q) ∧ stmarker m)
move_left_disj
⊢ ∀p q m.
      (p ∨ stmarker m ⇔ stmarker m ∨ p) ∧
      ((stmarker m ∨ p) ∨ q ⇔ stmarker m ∨ p ∨ q) ∧
      (p ∨ stmarker m ∨ q ⇔ stmarker m ∨ p ∨ q)
move_left_conj
⊢ ∀p q m.
      (p ∧ stmarker m ⇔ stmarker m ∧ p) ∧
      ((stmarker m ∧ p) ∧ q ⇔ stmarker m ∧ p ∧ q) ∧
      (p ∧ stmarker m ∧ q ⇔ stmarker m ∧ p ∧ q)