Theory "metric"

Parents     real   topology

Signature

Type Arity
metric 1
Constant Type
B :α metric -> α # real -> α -> bool
dist :α metric -> α # α -> real
ismet :(α # α -> real) -> bool
metric :(α # α -> real) -> α metric
mr1 :real metric
mtop :α metric -> α topology

Definitions

mtop
⊢ ∀m.
      mtop m =
      topology (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)
mr1
⊢ mr1 = metric (λ(x,y). abs (y − x))
metric_tybij
⊢ (∀a. metric (dist a) = a) ∧ ∀r. ismet r ⇔ (dist (metric r) = r)
metric_TY_DEF
⊢ ∃rep. TYPE_DEFINITION ismet rep
ismet
⊢ ∀m.
      ismet m ⇔
      (∀x y. (m (x,y) = 0) ⇔ (x = y)) ∧ ∀x y z. m (y,z) ≤ m (x,y) + m (x,z)
ball
⊢ ∀m x e. metric$B m (x,e) = (λy. dist m (x,y) < e)


Theorems

MTOP_OPEN
⊢ ∀S' m.
      open_in (mtop m) S' ⇔ ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y
MTOP_LIMPT
⊢ ∀m x S'.
      limpt (mtop m) x S' ⇔ ∀e. 0 < e ⇒ ∃y. x ≠ y ∧ S' y ∧ dist m (x,y) < e
mtop_istopology
⊢ ∀m. istopology (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)
MR1_SUB_LT
⊢ ∀x d. 0 < d ⇒ (dist mr1 (x,x − d) = d)
MR1_SUB_LE
⊢ ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x − d) = d)
MR1_SUB
⊢ ∀x d. dist mr1 (x,x − d) = abs d
MR1_LIMPT
⊢ ∀x. limpt (mtop mr1) x 𝕌(:real)
MR1_DEF
⊢ ∀x y. dist mr1 (x,y) = abs (y − x)
MR1_BETWEEN1
⊢ ∀x y z. x < z ∧ dist mr1 (x,y) < z − x ⇒ y < z
MR1_ADD_POS
⊢ ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x + d) = d)
MR1_ADD_LT
⊢ ∀x d. 0 < d ⇒ (dist mr1 (x,x + d) = d)
MR1_ADD
⊢ ∀x d. dist mr1 (x,x + d) = abs d
METRIC_ZERO
⊢ ∀m x y. (dist m (x,y) = 0) ⇔ (x = y)
METRIC_TRIANGLE
⊢ ∀m x y z. dist m (x,z) ≤ dist m (x,y) + dist m (y,z)
METRIC_SYM
⊢ ∀m x y. dist m (x,y) = dist m (y,x)
METRIC_SAME
⊢ ∀m x. dist m (x,x) = 0
METRIC_POS
⊢ ∀m x y. 0 ≤ dist m (x,y)
METRIC_NZ
⊢ ∀m x y. x ≠ y ⇒ 0 < dist m (x,y)
METRIC_ISMET
⊢ ∀m. ismet (dist m)
ISMET_R1
⊢ ismet (λ(x,y). abs (y − x))
BALL_OPEN
⊢ ∀m x e. 0 < e ⇒ open_in (mtop m) (metric$B m (x,e))
BALL_NEIGH
⊢ ∀m x e. 0 < e ⇒ neigh (mtop m) (metric$B m (x,e),x)