- MTOP_OPEN
-
⊢ ∀S' m.
open_in (mtop m) S' ⇔ ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y
- MTOP_LIMPT
-
⊢ ∀m x S'.
limpt (mtop m) x S' ⇔ ∀e. 0 < e ⇒ ∃y. x ≠ y ∧ S' y ∧ dist m (x,y) < e
- mtop_istopology
-
⊢ ∀m. istopology (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)
- MR1_SUB_LT
-
⊢ ∀x d. 0 < d ⇒ (dist mr1 (x,x − d) = d)
- MR1_SUB_LE
-
⊢ ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x − d) = d)
- MR1_SUB
-
⊢ ∀x d. dist mr1 (x,x − d) = abs d
- MR1_LIMPT
-
⊢ ∀x. limpt (mtop mr1) x 𝕌(:real)
- MR1_DEF
-
⊢ ∀x y. dist mr1 (x,y) = abs (y − x)
- MR1_BETWEEN1
-
⊢ ∀x y z. x < z ∧ dist mr1 (x,y) < z − x ⇒ y < z
- MR1_ADD_POS
-
⊢ ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x + d) = d)
- MR1_ADD_LT
-
⊢ ∀x d. 0 < d ⇒ (dist mr1 (x,x + d) = d)
- MR1_ADD
-
⊢ ∀x d. dist mr1 (x,x + d) = abs d
- METRIC_ZERO
-
⊢ ∀m x y. (dist m (x,y) = 0) ⇔ (x = y)
- METRIC_TRIANGLE
-
⊢ ∀m x y z. dist m (x,z) ≤ dist m (x,y) + dist m (y,z)
- METRIC_SYM
-
⊢ ∀m x y. dist m (x,y) = dist m (y,x)
- METRIC_SAME
-
⊢ ∀m x. dist m (x,x) = 0
- METRIC_POS
-
⊢ ∀m x y. 0 ≤ dist m (x,y)
- METRIC_NZ
-
⊢ ∀m x y. x ≠ y ⇒ 0 < dist m (x,y)
- METRIC_ISMET
-
⊢ ∀m. ismet (dist m)
- ISMET_R1
-
⊢ ismet (λ(x,y). abs (y − x))
- BALL_OPEN
-
⊢ ∀m x e. 0 < e ⇒ open_in (mtop m) (metric$B m (x,e))
- BALL_NEIGH
-
⊢ ∀m x e. 0 < e ⇒ neigh (mtop m) (metric$B m (x,e),x)