- ZERO_lt_ordEXP_I
-
⊢ ∀a x. 0 < a ⇒ 0 < a ** x
- ZERO_lt_ordEXP
-
⊢ 0 < a ** x ⇔ 0 < a ∨ islimit x
- x_le_ordEXP_x
-
⊢ ∀a x. 1 < a ⇒ x ≤ a ** x
- WIN_allOrds
-
⊢ (x,y) WIN allOrds ⇔ x < y
- wellorder_ordinal_isomorphism
-
⊢ ∀w. orderiso w (wobound (mkOrdinal w) allOrds)
- wellorder_allOrds
-
⊢ wellorder {(x,y) | (x = y) ∨ x < y}
- Unum_cle_Uinf
-
⊢ 𝕌(:num) ≼ 𝕌(:num + α)
- univ_ord_greater_cardinal
-
⊢ 𝕌(:num + α) ≺ 𝕌(:α ordinal)
- univ_cord_uncountable
-
⊢ ¬COUNTABLE 𝕌(:unit ordinal)
- unitinf_univnum
-
⊢ 𝕌(:num + unit) ≈ 𝕌(:num)
- ubsup_thm
-
⊢ (∀a. a ∈ s ⇒ a < b) ⇒ ∀c. c < sup s ⇔ ∃d. d ∈ s ∧ c < d
- suppred_suplt_ELIM
-
⊢ sup (preds a) < b ⇒ ∀d. d < a ⇒ d ≤ b
- suple_thm
-
⊢ ∀b s. s ≼ 𝕌(:num + α) ∧ b ∈ s ⇒ b ≤ sup s
- sup_thm
-
⊢ s ≼ 𝕌(:num + α) ⇒ ∀a. a < sup s ⇔ ∃b. b ∈ s ∧ a < b
- sup_SING
-
⊢ sup {a} = a
- sup_preds_SUC
-
⊢ sup (preds a⁺) = a
- sup_preds_omax_NONE
-
⊢ islimit a ⇔ (sup (preds a) = a)
- sup_lt_implies
-
⊢ s ≼ 𝕌(:num + α) ∧ sup s < a ∧ b ∈ s ⇒ b < a
- sup_eq_sup
-
⊢ s1 ≼ 𝕌(:num + α) ∧ s2 ≼ 𝕌(:num + α) ∧ (∀a. a ∈ s1 ⇒ ∃b. b ∈ s2 ∧ a ≤ b) ∧
(∀b. b ∈ s2 ⇒ ∃a. a ∈ s1 ∧ b ≤ a) ⇒
(sup s1 = sup s2)
- sup_eq_SUC
-
⊢ s ≼ 𝕌(:num + α) ∧ (sup s = a⁺) ⇒ a⁺ ∈ s
- sup_eq_max
-
⊢ (∀b. b ∈ s ⇒ b ≤ a) ∧ a ∈ s ⇒ (sup s = a)
- sup_EQ_0
-
⊢ s ≼ 𝕌(:num + α) ⇒ ((sup s = 0) ⇔ (s = ∅) ∨ (s = {0}))
- sup_EMPTY
-
⊢ sup ∅ = 0
- strict_continuity_preserves_islimit
-
⊢ (∀s. s ≼ 𝕌(:num + α) ∧ s ≠ ∅ ⇒ (f (sup s) = sup (IMAGE f s))) ∧
(∀x y. x < y ⇒ f x < f y) ∧ islimit a ∧ a ≠ 0 ⇒
islimit (f a)
- simple_ord_induction
-
⊢ ∀P.
P 0 ∧ (∀a. P a ⇒ P a⁺) ∧
(∀a. islimit a ∧ 0 < a ∧ (∀b. b < a ⇒ P b) ⇒ P a) ⇒
∀a. P a
- preds_wobound
-
⊢ preds ord = elsOf (wobound ord allOrds)
- preds_surj
-
⊢ ∀x. downward_closed x ∧ x ≠ 𝕌(:α ordinal) ⇒ ∃y. preds y = x
- preds_suple
-
⊢ downward_closed s ∧ s ≠ 𝕌(:α ordinal) ⇒ (sup s ≤ b ⇔ ∀d. d ∈ s ⇒ d ≤ b)
- preds_sup_thm
-
⊢ downward_closed s ∧ s ≠ 𝕌(:α ordinal) ⇒ ∀b. b < sup s ⇔ ∃d. d ∈ s ∧ b < d
- preds_sup
-
⊢ s ≼ 𝕌(:num + α) ⇒ (preds (sup s) = dclose s)
- preds_ordSUC
-
⊢ preds a⁺ = a INSERT preds a
- preds_omax_SOME_SUC
-
⊢ (omax (preds a) = SOME b) ⇔ (a = b⁺)
- preds_lt_PSUBSET
-
⊢ w1 < w2 ⇔ preds w1 ⊂ preds w2
- preds_lesup
-
⊢ downward_closed s ∧ s ≠ 𝕌(:α ordinal) ⇒ ∀d. d ∈ s ⇒ d ≤ sup s
- preds_inj_univ
-
⊢ preds ord ≼ 𝕌(:num + α)
- preds_EQ_EMPTY
-
⊢ (preds x = ∅) ⇔ (x = 0)
- preds_downward_closed
-
⊢ downward_closed (preds w)
- preds_bij
-
⊢ BIJ preds 𝕌(:α ordinal) (downward_closed DELETE 𝕌(:α ordinal))
- preds_11
-
⊢ (preds w1 = preds w2) ⇔ (w1 = w2)
- preds_0
-
⊢ preds 0 = ∅
- predimage_suplt_ELIM
-
⊢ sup (IMAGE f (preds a)) < b ⇒ ∀d. d < a ⇒ f d ≤ b
- predimage_sup_thm
-
⊢ ∀b. b < sup (IMAGE f (preds a)) ⇔ ∃d. d < a ∧ b < f d
- polyform_UNIQUE
-
⊢ ∀a b ces.
1 < a ∧ is_polyform a ces ∧ (b = eval_poly a ces) ⇒ (polyform a b = ces)
- polyform_exists
-
⊢ ∀a b. 1 < a ⇒ ∃ces. is_polyform a ces ∧ (b = eval_poly a ces)
- polyform_eval_poly
-
⊢ 1 < a ∧ is_polyform a b ⇒ (polyform a (eval_poly a b) = b)
- polyform_EQ_NIL
-
⊢ 1 < a ⇒ ((polyform a x = []) ⇔ (x = 0))
- polyform_0
-
⊢ 1 < a ⇒ (polyform a 0 = [])
- ordZERO_ltSUC
-
⊢ 0 < x⁺
- ordSUC_ZERO
-
⊢ a⁺ ≠ 0
- ordSUC_NUMERAL
-
⊢ (&NUMERAL n)⁺ = &(NUMERAL n + 1)
- ordSUC_MONO
-
⊢ a⁺ < b⁺ ⇔ a < b
- ordSUC_11
-
⊢ (a⁺ = b⁺) ⇔ (a = b)
- ordMULT_lt_MONO_R_EQN
-
⊢ c * a < c * b ⇔ a < b ∧ 0 < c
- ordMULT_lt_MONO_R
-
⊢ ∀a b c. a < b ∧ 0 < c ⇒ c * a < c * b
- ordMULT_le_MONO_R
-
⊢ ∀a b c. a ≤ b ⇒ c * a ≤ c * b
- ordMULT_le_MONO_L
-
⊢ ∀a b c. a ≤ b ⇒ a * c ≤ b * c
- ordMULT_LDISTRIB
-
⊢ ∀a b c. c * (a + b) = c * a + c * b
- ordMULT_fromNat
-
⊢ &n * &m = &(n * m)
- ordMULT_EQ_0
-
⊢ ∀x y. (x * y = 0) ⇔ (x = 0) ∨ (y = 0)
- ordMULT_continuous
-
⊢ ∀s. s ≼ 𝕌(:num + α) ⇒ (a * sup s = sup (IMAGE ($* a) s))
- ordMULT_CANCEL_R
-
⊢ (z * x = z * y) ⇔ (z = 0) ∨ (x = y)
- ordMULT_ASSOC
-
⊢ ∀a b c. a * (b * c) = a * b * c
- ordMULT_2R
-
⊢ a * 2 = a + a
- ordMULT_1R
-
⊢ ∀a. a * 1 = a
- ordMULT_1L
-
⊢ ∀a. 1 * a = a
- ordMULT_0R
-
⊢ ∀a. a * 0 = 0
- ordMULT_0L
-
⊢ ∀a. 0 * a = 0
- ordMUL_under_epsilon0
-
⊢ x < ε₀ ∧ y < ε₀ ⇒ x * y < ε₀
- ordMOD_UNIQUE
-
⊢ ∀a b q r. 0 < b ∧ (a = b * q + r) ∧ r < b ⇒ (a % b = r)
- ordlte_TRANS
-
⊢ ∀x y z. x < y ∧ y ≤ z ⇒ x < z
- ordlt_ZERO
-
⊢ 0 ≤ a
- ordlt_WF
-
⊢ WF $<
- ordlt_trichotomy
-
⊢ ∀w2 w1. w1 < w2 ∨ (w1 = w2) ∨ w2 < w1
- ordlt_TRANS
-
⊢ ∀w1 w2 w3. w1 < w2 ∧ w2 < w3 ⇒ w1 < w3
- ordlt_SUC_DISCRETE
-
⊢ a < b⁺ ⇔ a < b ∨ (a = b)
- ordlt_SUC
-
⊢ a < a⁺
- ordlt_REFL
-
⊢ ∀w. w ≤ w
- ordlt_mkOrdinal
-
⊢ o1 < o2 ⇔ ∀w1 w2. (mkOrdinal w1 = o1) ∧ (mkOrdinal w2 = o2) ⇒ orderlt w1 w2
- ordlt_fromNat
-
⊢ ∀n x. x < &n ⇔ ∃m. (x = &m) ∧ m < n
- ordlt_EXISTS_ADD
-
⊢ ∀a b. a < b ⇔ ∃c. c ≠ 0 ∧ (b = a + c)
- ordlt_DISCRETE1
-
⊢ ¬(a < b ∧ b < a⁺)
- ordlt_CANCEL_ADDR
-
⊢ ∀b a. a < a + b ⇔ 0 < b
- ordlt_CANCEL_ADDL
-
⊢ a + b < a ⇔ F
- ordlt_CANCEL
-
⊢ ∀b a c. c + a < c + b ⇔ a < b
- ordLOG_correct
-
⊢ 1 < b ∧ 0 < x ⇒ b ** ordLOG b x ≤ x ∧ ∀a. ordLOG b x < a ⇒ x < b ** a
- ordlet_TRANS
-
⊢ ∀x y z. x ≤ y ∧ y < z ⇒ x < z
- ordleq0
-
⊢ x ≤ 0 ⇔ (x = 0)
- ordle_TRANS
-
⊢ ∀x y z. x ≤ y ∧ y ≤ z ⇒ x ≤ z
- ordle_lteq
-
⊢ a ≤ b ⇔ a < b ∨ (a = b)
- ordle_EXISTS_ADD
-
⊢ ∀a b. a ≤ b ⇔ ∃c. b = a + c
- ordle_CANCEL_ADDR
-
⊢ x ≤ x + a
- ordle_ANTISYM
-
⊢ a ≤ b ∧ b ≤ a ⇒ (a = b)
- ordinal_QUOTIENT
-
⊢ QUOTIENT orderiso mkOrdinal ordinal_REP
- ordinal_IVT
-
⊢ (∀a. 0 < a ∧ islimit a ⇒ (f a = sup (IMAGE f (preds a)))) ∧
(∀x y. x ≤ y ⇒ f x ≤ f y) ∧ a1 < a2 ∧ f a1 ≤ c ∧ c < f a2 ⇒
∃b. a1 ≤ b ∧ b < a2 ∧ f b ≤ c ∧ c < f b⁺
- ordinal_ABS_REP_CLASS
-
⊢ (∀a. ordinal_ABS_CLASS (ordinal_REP_CLASS a) = a) ∧
∀c.
(∃r. orderiso r r ∧ (c = orderiso r)) ⇔
(ordinal_REP_CLASS (ordinal_ABS_CLASS c) = c)
- ordEXP_ZERO_nonlimit
-
⊢ omax (preds x) ≠ NONE ⇒ (0 ** x = 0)
- ordEXP_ZERO_limit
-
⊢ ∀x. islimit x ⇒ (0 ** x = 1)
- ordEXP_under_epsilon0
-
⊢ a < ε₀ ∧ b < ε₀ ⇒ a ** b < ε₀
- ordEXP_MUL
-
⊢ 0 < x ⇒ (x ** (y * z) = (x ** y) ** z)
- ordEXP_lt_MONO_R
-
⊢ ∀y x a. 1 < a ∧ x < y ⇒ a ** x < a ** y
- ordEXP_lt_IFF
-
⊢ ∀x y a. 1 < a ⇒ (a ** x < a ** y ⇔ x < y)
- ordEXP_le_MONO_R
-
⊢ ∀x y a. 0 < a ∧ x ≤ y ⇒ a ** x ≤ a ** y
- ordEXP_le_MONO_L
-
⊢ ∀x a b. a ≤ b ⇒ a ** x ≤ b ** x
- ordEXP_fromNat
-
⊢ &x ** &n = &(x ** n)
- ordEXP_EQ_0
-
⊢ ∀y x. (x ** y = 0) ⇔ (x = 0) ∧ omax (preds y) ≠ NONE
- ordEXP_continuous
-
⊢ ∀a s. 0 < a ∧ s ≼ 𝕌(:num + α) ∧ s ≠ ∅ ⇒ (a ** sup s = sup (IMAGE ($** a) s))
- ordEXP_ADD
-
⊢ 0 < x ⇒ (x ** (y + z) = x ** y * x ** z)
- ordEXP_2R
-
⊢ a ** 2 = a * a
- ordEXP_1R
-
⊢ a ** 1 = a
- ordEXP_1L
-
⊢ ∀a. 1 ** a = 1
- orderlt_iso_REFL
-
⊢ orderiso w1 w2 ⇒ ¬orderlt w1 w2
- orderiso_wobound2
-
⊢ orderiso (wobound x w) (wobound y w) ⇒ (x,y) ∉ strict (destWO w)
- ordDIV_UNIQUE
-
⊢ ∀a b q r. 0 < b ∧ (a = b * q + r) ∧ r < b ⇒ (a / b = q)
- ordADD_weak_MONO
-
⊢ ∀c a b. a < b ⇒ a + c ≤ b + c
- ordADD_under_epsilon0
-
⊢ x < ε₀ ∧ y < ε₀ ⇒ x + y < ε₀
- ordADD_RIGHT_CANCEL
-
⊢ ∀b a c. (a + b = a + c) ⇔ (b = c)
- ordADD_MONO
-
⊢ ∀b a c. a < b ⇒ c + a < c + b
- ordADD_le_MONO_L
-
⊢ x ≤ y ⇒ x + z ≤ y + z
- ordADD_fromNat_omega
-
⊢ &n + ω = ω
- ordADD_fromNat
-
⊢ &n + &m = &(n + m)
- ordADD_EQ_0
-
⊢ ∀y x. (x + y = 0) ⇔ (x = 0) ∧ (y = 0)
- ordADD_continuous
-
⊢ ∀s. s ≼ 𝕌(:num + α) ∧ s ≠ ∅ ⇒ (a + sup s = sup (IMAGE ($+ a) s))
- ordADD_CANCEL1
-
⊢ (∀c a. (a = a + c) ⇔ (c = 0)) ∧ ∀c a. (a + c = a) ⇔ (c = 0)
- ordADD_ASSOC
-
⊢ ∀a b c. a + (b + c) = a + b + c
- ordADD_0L
-
⊢ ∀a. 0 + a = a
- ord_RECURSION
-
⊢ ∀z sf lf.
∃h.
(h 0 = z) ∧ (∀a. h a⁺ = sf a (h a)) ∧
∀a. 0 < a ∧ islimit a ⇒ (h a = lf a (IMAGE h (preds a)))
- ORD_ONE
-
⊢ 0⁺ = 1
- ord_induction
-
⊢ (∀min. (∀b. b < min ⇒ P b) ⇒ P min) ⇒ ∀a. P a
- ord_CASES
-
⊢ ∀a. (a = 0) ∨ (∃a0. a = a0⁺) ∨ 0 < a ∧ islimit a
- omega_MUL_fromNat
-
⊢ 0 < n ⇒ (&n * ω = ω)
- omega_lt_epsilon0
-
⊢ ω < ε₀
- omega_islimit
-
⊢ islimit ω
- omega_exp_islimit
-
⊢ 0 < a ⇒ islimit (ω ** a)
- omax_sup
-
⊢ (omax s = SOME a) ⇒ (sup s = a)
- omax_SOME
-
⊢ (omax s = SOME a) ⇔ a ∈ s ∧ ∀b. b ∈ s ⇒ b ≤ a
- omax_preds_SUC
-
⊢ omax (preds a⁺) = SOME a
- omax_preds_omega
-
⊢ islimit ω
- omax_NONE
-
⊢ (omax s = NONE) ⇔ ∀a. a ∈ s ⇒ ∃b. b ∈ s ∧ a < b
- omax_EMPTY
-
⊢ omax ∅ = NONE
- olog_correct
-
⊢ 0 < x ⇒ ω ** olog x ≤ x ∧ ∀a. olog x < a ⇒ x < ω ** a
- oleast_intro
-
⊢ ∀Q P. (∃a. P a) ∧ (∀a. (∀b. b < a ⇒ ¬P b) ∧ P a ⇒ Q a) ⇒ Q ($oleast P)
- no_maximal_ordinal
-
⊢ ∀a. ∃b. a < b
- mul_omega_islimit
-
⊢ islimit (ω * a)
- lt_suppreds
-
⊢ ∀b. b < sup (preds a) ⇔ ∃d. d < a ∧ b < d
- lt_omega
-
⊢ ∀a. a < ω ⇔ ∃m. a = &m
- leqLEFT_CANCEL
-
⊢ ∀x a. x ≤ a + x
- islimit_SUC_lt
-
⊢ islimit b ∧ a < b ⇒ a⁺ < b
- islimit_SUC
-
⊢ islimit x⁺ ⇔ F
- islimit_mul_R
-
⊢ ∀a. islimit a ⇒ islimit (b * a)
- islimit_fromNat
-
⊢ islimit (&x) ⇔ (x = 0)
- islimit_0
-
⊢ islimit 0
- is_polyform_ind
-
⊢ ∀P.
(∀a. P a []) ∧ (∀a c e. P a [(c,e)]) ∧
(∀a c1 e1 c2 e2 t. P a ((c2,e2)::t) ⇒ P a ((c1,e1)::(c2,e2)::t)) ⇒
∀v v1. P v v1
- is_polyform_head_dominates_tail
-
⊢ 1 < a ∧ is_polyform a ((c,e)::t) ⇒ eval_poly a t < a ** e
- is_polyform_ELthm
-
⊢ is_polyform a ces ⇔
(∀i j. i < j ∧ j < LENGTH ces ⇒ SND (EL j ces) < SND (EL i ces)) ∧
∀c e. MEM (c,e) ces ⇒ 0 < c ∧ c < a
- is_polyform_def
-
⊢ (∀a. is_polyform a [] ⇔ T) ∧
(∀e c a. is_polyform a [(c,e)] ⇔ 0 < c ∧ c < a) ∧
∀t e2 e1 c2 c1 a.
is_polyform a ((c1,e1)::(c2,e2)::t) ⇔
0 < c1 ∧ c1 < a ∧ e2 < e1 ∧ is_polyform a ((c2,e2)::t)
- is_polyform_CONS_E
-
⊢ is_polyform a ((c,e)::t) ⇒ 0 < c ∧ c < a ∧ is_polyform a t
- IN_preds
-
⊢ x ∈ preds w ⇔ x < w
- IMAGE_EQ_SING
-
⊢ (IMAGE f s = {x}) ⇔ (∃y. y ∈ s) ∧ ∀y. y ∈ s ⇒ (f y = x)
- IFF_ZERO_lt
-
⊢ (x ≠ 0 ⇔ 0 < x) ∧ (1 ≤ x ⇔ 0 < x)
- generic_continuity
-
⊢ (∀a. 0 < a ∧ islimit a ⇒ (f a = sup (IMAGE f (preds a)))) ∧
(∀x y. x ≤ y ⇒ f x ≤ f y) ⇒
∀s. s ≼ 𝕌(:num + α) ∧ s ≠ ∅ ⇒ (f (sup s) = sup (IMAGE f s))
- fromNat_SUC
-
⊢ ∀n. &SUC n = (&n)⁺
- fromNat_ordlt
-
⊢ &n < &m ⇔ n < m
- fromNat_lt_omega
-
⊢ ∀n. &n < ω
- fromNat_lt_epsilon0
-
⊢ &n < ε₀
- fromNat_eq_omega
-
⊢ ∀n. &n ≠ ω
- fromNat_compute
-
⊢ (0 = oleast a. T) ∧ (∀n. &NUMERAL (BIT1 n) = (&(NUMERAL (BIT1 n) − 1))⁺) ∧
∀n. &NUMERAL (BIT2 n) = (&NUMERAL (BIT1 n))⁺
- fromNat_11
-
⊢ ∀x y. (&x = &y) ⇔ (x = y)
- fixpoints_exist
-
⊢ (∀s. s ≠ ∅ ∧ s ≼ 𝕌(:num + α) ⇒ (f (sup s) = sup (IMAGE f s))) ∧
(∀x. x ≤ f x) ⇒
∀a. ∃b. a ≤ b ∧ (f b = b)
- expbound_add
-
⊢ ∀a x y. x < ω ** a ∧ y < ω ** a ⇒ x + y < ω ** a
- eval_poly_ind
-
⊢ ∀P. (∀a. P a []) ∧ (∀a c e t. P a t ⇒ P a ((c,e)::t)) ⇒ ∀v v1. P v v1
- eval_poly_def
-
⊢ (∀a. eval_poly a [] = 0) ∧
∀t e c a. eval_poly a ((c,e)::t) = a ** e * c + eval_poly a t
- epsilon0_least_fixpoint
-
⊢ ∀a. a < ε₀ ⇒ a < ω ** a ∧ ω ** a < ε₀
- epsilon0_fixpoint
-
⊢ ω ** ε₀ = ε₀
- elsOf_allOrds
-
⊢ elsOf allOrds = 𝕌(:α ordinal)
- dclose_cardleq_univinf
-
⊢ s ≼ 𝕌(:num + α) ⇒ dclose s ≼ 𝕌(:num + α)
- dclose_BIGUNION
-
⊢ dclose s = BIGUNION (IMAGE preds s)
- cx_lt_x
-
⊢ x * c < x ⇔ 0 < x ∧ (c = 0)
- csup_thm
-
⊢ COUNTABLE s ⇒ ∀b. b < sup s ⇔ ∃d. d ∈ s ∧ b < d
- csup_suple
-
⊢ COUNTABLE s ⇒ (sup s ≤ b ⇔ ∀d. d ∈ s ⇒ d ≤ b)
- csup_lesup
-
⊢ COUNTABLE s ⇒ ∀d. d ∈ s ⇒ d ≤ sup s
- countableOrds_uncountable
-
⊢ ¬COUNTABLE {a | countableOrd a}
- countableOrds_dclosed
-
⊢ a < b ∧ countableOrd b ⇒ countableOrd a
- cord_countable_preds
-
⊢ countableOrd ord
- CNF_thm
-
⊢ ∀b. is_polyform ω (CNF b) ∧ (b = eval_poly ω (CNF b))
- CNF_nat
-
⊢ CNF (&n) = if n = 0 then [] else [(&n,0)]
- addL_fixpoint_iff
-
⊢ (a + b = b) ⇔ a * ω ≤ b
- add_omega_islimit
-
⊢ islimit (a + ω)
- add_nat_islimit
-
⊢ 0 < n ⇒ (islimit (a + &n) ⇔ F)
- ADD1R
-
⊢ a + 1 = a⁺