Theory "res_quan"

Parents     pred_set

Theorems

RES_SELECT_UNIV
⊒ βˆ€p. RES_SELECT π•Œ(:Ξ±) p = $@ p
RES_SELECT_EMPTY
⊒ βˆ€p. RES_SELECT βˆ… p = @x. F
RES_SELECT
⊒ βˆ€P f. RES_SELECT P f = @x. x ∈ P ∧ f x
RES_FORALL_UNIV
⊒ βˆ€p. RES_FORALL π•Œ(:Ξ±) p ⇔ $! p
RES_FORALL_UNIQUE
⊒ βˆ€P j. (βˆ€i:: $= j. P i) ⇔ P j
RES_FORALL_UNION
⊒ βˆ€P s t. RES_FORALL (s βˆͺ t) P ⇔ RES_FORALL s P ∧ RES_FORALL t P
RES_FORALL_T
⊒ βˆ€P s x (x::s). T
RES_FORALL_SUBSET
⊒ βˆ€P s t. s βŠ† t β‡’ RES_FORALL t P β‡’ RES_FORALL s P
RES_FORALL_REORDER
⊒ βˆ€P Q R. (βˆ€(i::P) (j::Q). R i j) ⇔ βˆ€(j::Q) (i::P). R i j
RES_FORALL_NULL
⊒ βˆ€p m. (βˆ€x::p. m) ⇔ (p = βˆ…) ∨ m
RES_FORALL_NOT_EMPTY
⊒ βˆ€P s. Β¬RES_FORALL s P β‡’ s β‰  βˆ…
RES_FORALL_FORALL
⊒ βˆ€P R x. (βˆ€x (i::P). R i x) ⇔ βˆ€(i::P) x. R i x
RES_FORALL_F
⊒ βˆ€P s x. (βˆ€x::s. F) ⇔ (s = βˆ…)
RES_FORALL_EMPTY
⊒ βˆ€p. RES_FORALL βˆ… p
RES_FORALL_DISJ_DIST
⊒ βˆ€P Q R. (βˆ€i::(Ξ»j. P j ∨ Q j). R i) ⇔ (βˆ€i::P. R i) ∧ βˆ€i::Q. R i
RES_FORALL_DIFF
⊒ βˆ€P s t x. (βˆ€x::s DIFF t. P x) ⇔ βˆ€x::s. x βˆ‰ t β‡’ P x
RES_FORALL_CONJ_DIST
⊒ βˆ€P Q R. (βˆ€i::P. Q i ∧ R i) ⇔ (βˆ€i::P. Q i) ∧ βˆ€i::P. R i
RES_FORALL_BIGUNION
⊒ βˆ€P sos. (βˆ€x::BIGUNION sos. P x) ⇔ βˆ€(s::sos) (x::s). P x
RES_FORALL_BIGINTER
⊒ βˆ€P sos. (βˆ€x::BIGINTER sos. P x) ⇔ βˆ€x. (βˆ€s::sos. x ∈ s) β‡’ P x
RES_FORALL
⊒ βˆ€P f. RES_FORALL P f ⇔ βˆ€x. x ∈ P β‡’ f x
RES_EXISTS_UNIV
⊒ βˆ€p. RES_EXISTS π•Œ(:Ξ±) p ⇔ $? p
RES_EXISTS_UNIQUE_UNIV
⊒ βˆ€p. RES_EXISTS_UNIQUE π•Œ(:Ξ±) p ⇔ $?! p
RES_EXISTS_UNIQUE_T
⊒ βˆ€P s x. (βˆƒ!x::s. T) ⇔ βˆƒ!x. x ∈ s
RES_EXISTS_UNIQUE_SING
⊒ βˆ€P s x. (βˆƒ!x::s. T) ⇔ βˆƒy. s = {y}
RES_EXISTS_UNIQUE_NULL
⊒ βˆ€p m. (βˆƒ!x::p. m) ⇔ (βˆƒx. p = {x}) ∧ m
RES_EXISTS_UNIQUE_NOT_EMPTY
⊒ βˆ€P s. RES_EXISTS_UNIQUE s P β‡’ s β‰  βˆ…
RES_EXISTS_UNIQUE_F
⊒ βˆ€P s x. Β¬βˆƒ!x::s. F
RES_EXISTS_UNIQUE_EXISTS
⊒ βˆ€P s. RES_EXISTS_UNIQUE P s β‡’ RES_EXISTS P s
RES_EXISTS_UNIQUE_EMPTY
⊒ βˆ€p. Β¬RES_EXISTS_UNIQUE βˆ… p
RES_EXISTS_UNIQUE_ELIM
⊒ βˆ€P s. (βˆƒ!x::s. P x) ⇔ βˆƒ!x. x ∈ s ∧ P x
RES_EXISTS_UNIQUE_ALT
⊒ βˆ€p m. RES_EXISTS_UNIQUE p m ⇔ βˆƒx::p. m x ∧ βˆ€y::p. m y β‡’ (y = x)
RES_EXISTS_UNIQUE
⊒ βˆ€P f. RES_EXISTS_UNIQUE P f ⇔ (βˆƒx::P. f x) ∧ βˆ€x y::P. f x ∧ f y β‡’ (x = y)
RES_EXISTS_UNION
⊒ βˆ€P s t. RES_EXISTS (s βˆͺ t) P ⇔ RES_EXISTS s P ∨ RES_EXISTS t P
RES_EXISTS_T
⊒ βˆ€P s x. (βˆƒx::s. T) ⇔ s β‰  βˆ…
RES_EXISTS_SUBSET
⊒ βˆ€P s t. s βŠ† t β‡’ RES_EXISTS s P β‡’ RES_EXISTS t P
RES_EXISTS_REORDER
⊒ βˆ€P Q R. (βˆƒ(i::P) (j::Q). R i j) ⇔ βˆƒ(j::Q) (i::P). R i j
RES_EXISTS_NULL
⊒ βˆ€p m. (βˆƒx::p. m) ⇔ p β‰  βˆ… ∧ m
RES_EXISTS_NOT_EMPTY
⊒ βˆ€P s. RES_EXISTS s P β‡’ s β‰  βˆ…
RES_EXISTS_F
⊒ βˆ€P s x. Β¬βˆƒs::x. F
RES_EXISTS_EQUAL
⊒ βˆ€P j. (βˆƒi:: $= j. P i) ⇔ P j
RES_EXISTS_EMPTY
⊒ βˆ€p. Β¬RES_EXISTS βˆ… p
RES_EXISTS_DISJ_DIST
⊒ βˆ€P Q R. (βˆƒi::P. Q i ∨ R i) ⇔ (βˆƒi::P. Q i) ∨ βˆƒi::P. R i
RES_EXISTS_DIFF
⊒ βˆ€P s t x. (βˆƒx::s DIFF t. P x) ⇔ βˆƒx::s. x βˆ‰ t ∧ P x
RES_EXISTS_BIGUNION
⊒ βˆ€P sos. (βˆƒx::BIGUNION sos. P x) ⇔ βˆƒ(s::sos) (x::s). P x
RES_EXISTS_BIGINTER
⊒ βˆ€P sos. (βˆƒx::BIGINTER sos. P x) ⇔ βˆƒx. (βˆ€s::sos. x ∈ s) ∧ P x
RES_EXISTS_ALT
⊒ βˆ€p m. RES_EXISTS p m ⇔ RES_SELECT p m ∈ p ∧ m (RES_SELECT p m)
RES_EXISTS
⊒ βˆ€P f. RES_EXISTS P f ⇔ βˆƒx. x ∈ P ∧ f x
RES_DISJ_EXISTS_DIST
⊒ βˆ€P Q R. (βˆƒi::(Ξ»i. P i ∨ Q i). R i) ⇔ (βˆƒi::P. R i) ∨ βˆƒi::Q. R i
RES_ABSTRACT_UNIV
⊒ βˆ€m. RES_ABSTRACT π•Œ(:Ξ±) m = m
RES_ABSTRACT_IDEMPOT
⊒ βˆ€p m. RES_ABSTRACT p (RES_ABSTRACT p m) = RES_ABSTRACT p m
RES_ABSTRACT_EQUAL_EQ
⊒ βˆ€p m1 m2.
      (RES_ABSTRACT p m1 = RES_ABSTRACT p m2) ⇔ βˆ€x. x ∈ p β‡’ (m1 x = m2 x)
RES_ABSTRACT_EQUAL
⊒ βˆ€p m1 m2.
      (βˆ€x. x ∈ p β‡’ (m1 x = m2 x)) β‡’ (RES_ABSTRACT p m1 = RES_ABSTRACT p m2)
RES_ABSTRACT
⊒ βˆ€p m x. x ∈ p β‡’ (RES_ABSTRACT p m x = m x)
NOT_RES_FORALL
⊒ βˆ€P s. Β¬(βˆ€x::s. P x) ⇔ βˆƒx::s. Β¬P x
NOT_RES_EXISTS
⊒ βˆ€P s. Β¬(βˆƒx::s. P x) ⇔ βˆ€x::s. Β¬P x
IN_BIGUNION_RES_EXISTS
⊒ βˆ€x sos. x ∈ BIGUNION sos ⇔ βˆƒs::sos. x ∈ s
IN_BIGINTER_RES_FORALL
⊒ βˆ€x sos. x ∈ BIGINTER sos ⇔ βˆ€s::sos. x ∈ s