- RES_SELECT_UNIV
-
β’ βp. RES_SELECT π(:Ξ±) p = $@ p
- RES_SELECT_EMPTY
-
β’ βp. RES_SELECT β
p = @x. F
- RES_SELECT
-
β’ βP f. RES_SELECT P f = @x. x β P β§ f x
- RES_FORALL_UNIV
-
β’ βp. RES_FORALL π(:Ξ±) p β $! p
- RES_FORALL_UNIQUE
-
β’ βP j. (βi:: $= j. P i) β P j
- RES_FORALL_UNION
-
β’ βP s t. RES_FORALL (s βͺ t) P β RES_FORALL s P β§ RES_FORALL t P
- RES_FORALL_T
-
β’ βP s x (x::s). T
- RES_FORALL_SUBSET
-
β’ βP s t. s β t β RES_FORALL t P β RES_FORALL s P
- RES_FORALL_REORDER
-
β’ βP Q R. (β(i::P) (j::Q). R i j) β β(j::Q) (i::P). R i j
- RES_FORALL_NULL
-
β’ βp m. (βx::p. m) β (p = β
) β¨ m
- RES_FORALL_NOT_EMPTY
-
β’ βP s. Β¬RES_FORALL s P β s β β
- RES_FORALL_FORALL
-
β’ βP R x. (βx (i::P). R i x) β β(i::P) x. R i x
- RES_FORALL_F
-
β’ βP s x. (βx::s. F) β (s = β
)
- RES_FORALL_EMPTY
-
β’ βp. RES_FORALL β
p
- RES_FORALL_DISJ_DIST
-
β’ βP Q R. (βi::(Ξ»j. P j β¨ Q j). R i) β (βi::P. R i) β§ βi::Q. R i
- RES_FORALL_DIFF
-
β’ βP s t x. (βx::s DIFF t. P x) β βx::s. x β t β P x
- RES_FORALL_CONJ_DIST
-
β’ βP Q R. (βi::P. Q i β§ R i) β (βi::P. Q i) β§ βi::P. R i
- RES_FORALL_BIGUNION
-
β’ βP sos. (βx::BIGUNION sos. P x) β β(s::sos) (x::s). P x
- RES_FORALL_BIGINTER
-
β’ βP sos. (βx::BIGINTER sos. P x) β βx. (βs::sos. x β s) β P x
- RES_FORALL
-
β’ βP f. RES_FORALL P f β βx. x β P β f x
- RES_EXISTS_UNIV
-
β’ βp. RES_EXISTS π(:Ξ±) p β $? p
- RES_EXISTS_UNIQUE_UNIV
-
β’ βp. RES_EXISTS_UNIQUE π(:Ξ±) p β $?! p
- RES_EXISTS_UNIQUE_T
-
β’ βP s x. (β!x::s. T) β β!x. x β s
- RES_EXISTS_UNIQUE_SING
-
β’ βP s x. (β!x::s. T) β βy. s = {y}
- RES_EXISTS_UNIQUE_NULL
-
β’ βp m. (β!x::p. m) β (βx. p = {x}) β§ m
- RES_EXISTS_UNIQUE_NOT_EMPTY
-
β’ βP s. RES_EXISTS_UNIQUE s P β s β β
- RES_EXISTS_UNIQUE_F
-
β’ βP s x. Β¬β!x::s. F
- RES_EXISTS_UNIQUE_EXISTS
-
β’ βP s. RES_EXISTS_UNIQUE P s β RES_EXISTS P s
- RES_EXISTS_UNIQUE_EMPTY
-
β’ βp. Β¬RES_EXISTS_UNIQUE β
p
- RES_EXISTS_UNIQUE_ELIM
-
β’ βP s. (β!x::s. P x) β β!x. x β s β§ P x
- RES_EXISTS_UNIQUE_ALT
-
β’ βp m. RES_EXISTS_UNIQUE p m β βx::p. m x β§ βy::p. m y β (y = x)
- RES_EXISTS_UNIQUE
-
β’ βP f. RES_EXISTS_UNIQUE P f β (βx::P. f x) β§ βx y::P. f x β§ f y β (x = y)
- RES_EXISTS_UNION
-
β’ βP s t. RES_EXISTS (s βͺ t) P β RES_EXISTS s P β¨ RES_EXISTS t P
- RES_EXISTS_T
-
β’ βP s x. (βx::s. T) β s β β
- RES_EXISTS_SUBSET
-
β’ βP s t. s β t β RES_EXISTS s P β RES_EXISTS t P
- RES_EXISTS_REORDER
-
β’ βP Q R. (β(i::P) (j::Q). R i j) β β(j::Q) (i::P). R i j
- RES_EXISTS_NULL
-
β’ βp m. (βx::p. m) β p β β
β§ m
- RES_EXISTS_NOT_EMPTY
-
β’ βP s. RES_EXISTS s P β s β β
- RES_EXISTS_F
-
β’ βP s x. Β¬βs::x. F
- RES_EXISTS_EQUAL
-
β’ βP j. (βi:: $= j. P i) β P j
- RES_EXISTS_EMPTY
-
β’ βp. Β¬RES_EXISTS β
p
- RES_EXISTS_DISJ_DIST
-
β’ βP Q R. (βi::P. Q i β¨ R i) β (βi::P. Q i) β¨ βi::P. R i
- RES_EXISTS_DIFF
-
β’ βP s t x. (βx::s DIFF t. P x) β βx::s. x β t β§ P x
- RES_EXISTS_BIGUNION
-
β’ βP sos. (βx::BIGUNION sos. P x) β β(s::sos) (x::s). P x
- RES_EXISTS_BIGINTER
-
β’ βP sos. (βx::BIGINTER sos. P x) β βx. (βs::sos. x β s) β§ P x
- RES_EXISTS_ALT
-
β’ βp m. RES_EXISTS p m β RES_SELECT p m β p β§ m (RES_SELECT p m)
- RES_EXISTS
-
β’ βP f. RES_EXISTS P f β βx. x β P β§ f x
- RES_DISJ_EXISTS_DIST
-
β’ βP Q R. (βi::(Ξ»i. P i β¨ Q i). R i) β (βi::P. R i) β¨ βi::Q. R i
- RES_ABSTRACT_UNIV
-
β’ βm. RES_ABSTRACT π(:Ξ±) m = m
- RES_ABSTRACT_IDEMPOT
-
β’ βp m. RES_ABSTRACT p (RES_ABSTRACT p m) = RES_ABSTRACT p m
- RES_ABSTRACT_EQUAL_EQ
-
β’ βp m1 m2.
(RES_ABSTRACT p m1 = RES_ABSTRACT p m2) β βx. x β p β (m1 x = m2 x)
- RES_ABSTRACT_EQUAL
-
β’ βp m1 m2.
(βx. x β p β (m1 x = m2 x)) β (RES_ABSTRACT p m1 = RES_ABSTRACT p m2)
- RES_ABSTRACT
-
β’ βp m x. x β p β (RES_ABSTRACT p m x = m x)
- NOT_RES_FORALL
-
β’ βP s. Β¬(βx::s. P x) β βx::s. Β¬P x
- NOT_RES_EXISTS
-
β’ βP s. Β¬(βx::s. P x) β βx::s. Β¬P x
- IN_BIGUNION_RES_EXISTS
-
β’ βx sos. x β BIGUNION sos β βs::sos. x β s
- IN_BIGINTER_RES_FORALL
-
β’ βx sos. x β BIGINTER sos β βs::sos. x β s