- ZIP_TAKE_LEQ
-
⊢ ∀n a b.
n ≤ LENGTH a ∧ LENGTH a ≤ LENGTH b ⇒
(ZIP (TAKE n a,TAKE n b) = TAKE n (ZIP (a,TAKE (LENGTH a) b)))
- ZIP_TAKE
-
⊢ ∀n a b.
n ≤ LENGTH a ∧ (LENGTH a = LENGTH b) ⇒
(ZIP (TAKE n a,TAKE n b) = TAKE n (ZIP (a,b)))
- ZIP_SNOC
-
⊢ ∀l1 l2.
(LENGTH l1 = LENGTH l2) ⇒
∀x1 x2. ZIP (SNOC x1 l1,SNOC x2 l2) = SNOC (x1,x2) (ZIP (l1,l2))
- ZIP_COUNT_LIST
-
⊢ (n = LENGTH l1) ⇒
(ZIP (l1,COUNT_LIST n) = GENLIST (λn. (EL n l1,n)) (LENGTH l1))
- ZIP_APPEND
-
⊢ ∀a b c d.
(LENGTH a = LENGTH b) ∧ (LENGTH c = LENGTH d) ⇒
(ZIP (a,b) ++ ZIP (c,d) = ZIP (a ++ c,b ++ d))
- UNZIP_SNOC
-
⊢ ∀x l.
UNZIP (SNOC x l) =
(SNOC (FST x) (FST (UNZIP l)),SNOC (SND x) (SND (UNZIP l)))
- UNIQUE_LIST_ELEM_COUNT
-
⊢ ∀e L. UNIQUE e L ⇔ (LIST_ELEM_COUNT e L = 1)
- two_common_prefixes
-
⊢ s ≠ ∅ ∧ p1 ∈ common_prefixes s ∧ p2 ∈ common_prefixes s ⇒ p1 ≼ p2 ∨ p2 ≼ p1
- TL_SNOC
-
⊢ ∀x l. TL (SNOC x l) = if NULL l then [] else SNOC x (TL l)
- TAKE_TAKE_T
-
⊢ ∀m l n. n ≤ m ⇒ (TAKE n (TAKE m l) = TAKE n l)
- TAKE_TAKE
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀n. n ≤ m ⇒ (TAKE n (TAKE m l) = TAKE n l)
- TAKE_SNOC
-
⊢ ∀n l. n ≤ LENGTH l ⇒ ∀x. TAKE n (SNOC x l) = TAKE n l
- TAKE_SEG_DROP
-
⊢ ∀n i l. i + n ≤ LENGTH l ⇒ (TAKE i l ++ SEG n i l ++ DROP (i + n) l = l)
- TAKE_SEG
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (TAKE n l = SEG n 0 l)
- TAKE_REVERSE
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (TAKE n (REVERSE l) = REVERSE (LASTN n l))
- TAKE_PRE_LENGTH
-
⊢ ∀ls. ls ≠ [] ⇒ (TAKE (PRE (LENGTH ls)) ls = FRONT ls)
- TAKE_LENGTH_APPEND
-
⊢ ∀l1 l2. TAKE (LENGTH l1) (l1 ++ l2) = l1
- TAKE_EL_SNOC
-
⊢ ∀ls n. n < LENGTH ls ⇒ (TAKE (n + 1) ls = SNOC (EL n ls) (TAKE n ls))
- take_drop_partition
-
⊢ ∀n m l. m ≤ n ⇒ (TAKE m l ++ TAKE (n − m) (DROP m l) = TAKE n l)
- TAKE_BUTLASTN
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (TAKE n l = BUTLASTN (LENGTH l − n) l)
- TAKE_APPEND2
-
⊢ ∀l1 n.
LENGTH l1 ≤ n ⇒ ∀l2. TAKE n (l1 ++ l2) = l1 ++ TAKE (n − LENGTH l1) l2
- TAKE_APPEND1
-
⊢ ∀n l1. n ≤ LENGTH l1 ⇒ ∀l2. TAKE n (l1 ++ l2) = TAKE n l1
- TAKE_APPEND
-
⊢ ∀n l1 l2. TAKE n (l1 ++ l2) = TAKE n l1 ++ TAKE (n − LENGTH l1) l2
- TAKE
-
⊢ (∀l. TAKE 0 l = []) ∧ ∀n x l. TAKE (SUC n) (x::l) = x::TAKE n l
- SUM_REVERSE
-
⊢ ∀l. SUM (REVERSE l) = SUM l
- SUM_REPLICATE
-
⊢ ∀n k. SUM (REPLICATE n k) = n * k
- SUM_FOLDR
-
⊢ ∀l. SUM l = FOLDR $+ 0 l
- SUM_FOLDL
-
⊢ ∀l. SUM l = FOLDL $+ 0 l
- SUM_FLAT
-
⊢ ∀l. SUM (FLAT l) = SUM (MAP SUM l)
- SPLITP_splitAtPki
-
⊢ SPLITP P = splitAtPki (K P) $,
- SPLITP_NIL_SND_EVERY
-
⊢ ∀ls r. (SPLITP P ls = (r,[])) ⇔ (r = ls) ∧ EVERY ($~ ∘ P) ls
- SPLITP_NIL_FST_IMP
-
⊢ ∀ls r. (SPLITP P ls = ([],r)) ⇒ (r = ls)
- SPLITP_LENGTH
-
⊢ ∀l. LENGTH (FST (SPLITP P l)) + LENGTH (SND (SPLITP P l)) = LENGTH l
- SPLITP_JOIN
-
⊢ ∀ls l r. (SPLITP P ls = (l,r)) ⇒ (ls = l ++ r)
- SPLITP_IMP
-
⊢ ∀P ls l r. (SPLITP P ls = (l,r)) ⇒ EVERY ($~ ∘ P) l ∧ (¬NULL r ⇒ P (HD r))
- SPLITP_EVERY
-
⊢ ∀P l. EVERY (λx. ¬P x) l ⇒ (SPLITP P l = (l,[]))
- SPLITP_compute
-
⊢ SPLITP = SPLITP_AUX []
- SPLITP_APPEND
-
⊢ ∀l1 l2.
SPLITP P (l1 ++ l2) =
if EXISTS P l1 then (FST (SPLITP P l1),SND (SPLITP P l1) ++ l2)
else (l1 ++ FST (SPLITP P l2),SND (SPLITP P l2))
- SNOC_REVERSE_CONS
-
⊢ ∀x l. SNOC x l = REVERSE (x::REVERSE l)
- SNOC_REPLICATE
-
⊢ ∀n x. SNOC x (REPLICATE n x) = REPLICATE (SUC n) x
- SNOC_FOLDR
-
⊢ ∀x l. SNOC x l = FOLDR CONS [x] l
- SNOC_EQ_LENGTH_EQ
-
⊢ ∀x1 l1 x2 l2. (SNOC x1 l1 = SNOC x2 l2) ⇒ (LENGTH l1 = LENGTH l2)
- SNOC_EL_TAKE
-
⊢ ∀n l. n < LENGTH l ⇒ (SNOC (EL n l) (TAKE n l) = TAKE (SUC n) l)
- SEG_TAKE_DROP
-
⊢ ∀n m l. n + m ≤ LENGTH l ⇒ (SEG n m l = TAKE n (DROP m l))
- SEG_SUC_EL
-
⊢ ∀n i l. i + n < LENGTH l ⇒ (SEG (SUC n) i l = EL i l::SEG n (i + 1) l)
- SEG_SUC_CONS
-
⊢ ∀m n l x. SEG m (SUC n) (x::l) = SEG m n l
- SEG_SNOC
-
⊢ ∀n m l. n + m ≤ LENGTH l ⇒ ∀x. SEG n m (SNOC x l) = SEG n m l
- SEG_SEG
-
⊢ ∀n1 m1 n2 m2 l.
n1 + m1 ≤ LENGTH l ∧ n2 + m2 ≤ n1 ⇒
(SEG n2 m2 (SEG n1 m1 l) = SEG n2 (m1 + m2) l)
- SEG_REVERSE
-
⊢ ∀n m l.
n + m ≤ LENGTH l ⇒
(SEG n m (REVERSE l) = REVERSE (SEG n (LENGTH l − (n + m)) l))
- SEG_LENGTH_SNOC
-
⊢ ∀l x. SEG 1 (LENGTH l) (SNOC x l) = [x]
- SEG_LENGTH_ID
-
⊢ ∀l. SEG (LENGTH l) 0 l = l
- SEG_LASTN_BUTLASTN
-
⊢ ∀n m l.
n + m ≤ LENGTH l ⇒
(SEG n m l = LASTN n (BUTLASTN (LENGTH l − (n + m)) l))
- SEG_CONS
-
⊢ ∀j n h t. 0 < j ∧ n + j ≤ LENGTH t + 1 ⇒ (SEG n j (h::t) = SEG n (j − 1) t)
- SEG_compute
-
⊢ (∀k l. SEG 0 k l = []) ∧
(∀m x l. SEG (NUMERAL (BIT1 m)) 0 (x::l) = x::SEG (NUMERAL (BIT1 m) − 1) 0 l) ∧
(∀m x l. SEG (NUMERAL (BIT2 m)) 0 (x::l) = x::SEG (NUMERAL (BIT1 m)) 0 l) ∧
(∀m k x l.
SEG (NUMERAL (BIT1 m)) (NUMERAL (BIT1 k)) (x::l) =
SEG (NUMERAL (BIT1 m)) (NUMERAL (BIT1 k) − 1) l) ∧
(∀m k x l.
SEG (NUMERAL (BIT2 m)) (NUMERAL (BIT1 k)) (x::l) =
SEG (NUMERAL (BIT2 m)) (NUMERAL (BIT1 k) − 1) l) ∧
(∀m k x l.
SEG (NUMERAL (BIT1 m)) (NUMERAL (BIT2 k)) (x::l) =
SEG (NUMERAL (BIT1 m)) (NUMERAL (BIT1 k)) l) ∧
∀m k x l.
SEG (NUMERAL (BIT2 m)) (NUMERAL (BIT2 k)) (x::l) =
SEG (NUMERAL (BIT2 m)) (NUMERAL (BIT1 k)) l
- SEG_APPEND2
-
⊢ ∀l1 m n l2.
LENGTH l1 ≤ m ∧ n ≤ LENGTH l2 ⇒
(SEG n m (l1 ++ l2) = SEG n (m − LENGTH l1) l2)
- SEG_APPEND1
-
⊢ ∀n m l1. n + m ≤ LENGTH l1 ⇒ ∀l2. SEG n m (l1 ++ l2) = SEG n m l1
- SEG_APPEND
-
⊢ ∀m l1 n l2.
m < LENGTH l1 ∧ LENGTH l1 ≤ n + m ∧ n + m ≤ LENGTH l1 + LENGTH l2 ⇒
(SEG n m (l1 ++ l2) =
SEG (LENGTH l1 − m) m l1 ++ SEG (n + m − LENGTH l1) 0 l2)
- SEG_0_SNOC
-
⊢ ∀m l x. m ≤ LENGTH l ⇒ (SEG m 0 (SNOC x l) = SEG m 0 l)
- SEG1
-
⊢ ∀n l. n < LENGTH l ⇒ (SEG 1 n l = [EL n l])
- REVERSE_ZIP
-
⊢ ∀l1 l2.
(LENGTH l1 = LENGTH l2) ⇒
(REVERSE (ZIP (l1,l2)) = ZIP (REVERSE l1,REVERSE l2))
- REVERSE_REPLICATE
-
⊢ ∀n x. REVERSE (REPLICATE n x) = REPLICATE n x
- REVERSE_FOLDR
-
⊢ ∀l. REVERSE l = FOLDR SNOC [] l
- REVERSE_FOLDL
-
⊢ ∀l. REVERSE l = FOLDL (λl' x. x::l') [] l
- REVERSE_FLAT
-
⊢ ∀l. REVERSE (FLAT l) = FLAT (REVERSE (MAP REVERSE l))
- REVERSE_DROP
-
⊢ ∀ls n.
n ≤ LENGTH ls ⇒
(REVERSE (DROP n ls) = REVERSE (LASTN (LENGTH ls − n) ls))
- REPLICATE_NIL
-
⊢ (REPLICATE x y = []) ⇔ (x = 0)
- REPLICATE_GENLIST
-
⊢ ∀n x. REPLICATE n x = GENLIST (K x) n
- REPLICATE_compute
-
⊢ (∀x. REPLICATE 0 x = []) ∧
(∀n x.
REPLICATE (NUMERAL (BIT1 n)) x = x::REPLICATE (NUMERAL (BIT1 n) − 1) x) ∧
∀n x. REPLICATE (NUMERAL (BIT2 n)) x = x::REPLICATE (NUMERAL (BIT1 n)) x
- REPLICATE_APPEND
-
⊢ REPLICATE n a ++ REPLICATE m a = REPLICATE (n + m) a
- prefixes_is_prefix_total
-
⊢ ∀l l1 l2. l1 ≼ l ∧ l2 ≼ l ⇒ l1 ≼ l2 ∨ l2 ≼ l1
- PREFIX_FOLDR
-
⊢ ∀P l. PREFIX P l = FOLDR (λx l'. if P x then x::l' else []) [] l
- PREFIX
-
⊢ (∀P. PREFIX P [] = []) ∧
∀P x l. PREFIX P (x::l) = if P x then x::PREFIX P l else []
- OR_EL_FOLDR
-
⊢ ∀l. OR_EL l ⇔ FOLDR $\/ F l
- OR_EL_FOLDL
-
⊢ ∀l. OR_EL l ⇔ FOLDL $\/ F l
- NULL_FOLDR
-
⊢ ∀l. NULL l ⇔ FOLDR (λx l'. F) T l
- NULL_FOLDL
-
⊢ ∀l. NULL l ⇔ FOLDL (λx l'. F) T l
- NOT_SNOC_NIL
-
⊢ ∀x l. SNOC x l ≠ []
- NOT_NULL_SNOC
-
⊢ ∀x l. ¬NULL (SNOC x l)
- NOT_NIL_SNOC
-
⊢ ∀x l. [] ≠ SNOC x l
- NIL_IN_common_prefixes
-
⊢ [] ∈ common_prefixes s
- MONOID_APPEND_NIL
-
⊢ MONOID $++ []
- MEM_TAKE_IMP
-
⊢ ∀l m x. MEM x (TAKE m l) ⇒ MEM x l
- MEM_TAKE
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀x. MEM x (TAKE m l) ⇒ MEM x l
- MEM_SING_APPEND
-
⊢ (∀a c. d ≠ a ++ [b] ++ c) ⇔ ¬MEM b d
- MEM_SEG
-
⊢ ∀n m l. n + m ≤ LENGTH l ⇒ ∀x. MEM x (SEG n m l) ⇒ MEM x l
- MEM_REPLICATE
-
⊢ ∀n. 0 < n ⇒ ∀x. MEM x (REPLICATE n x)
- MEM_LASTN
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀x. MEM x (LASTN m l) ⇒ MEM x l
- MEM_LAST_FRONT
-
⊢ ∀e l h. MEM e l ∧ e ≠ LAST (h::l) ⇒ MEM e (FRONT (h::l))
- MEM_LAST
-
⊢ ∀e l. MEM (LAST (e::l)) (e::l)
- MEM_FRONT
-
⊢ ∀l e y. MEM y (FRONT (e::l)) ⇒ MEM y (e::l)
- MEM_FOLDR_MAP
-
⊢ ∀x l. MEM x l ⇔ FOLDR $\/ F (MAP ($= x) l)
- MEM_FOLDR
-
⊢ ∀y l. MEM y l ⇔ FOLDR (λx l'. (y = x) ∨ l') F l
- MEM_FOLDL_MAP
-
⊢ ∀x l. MEM x l ⇔ FOLDL $\/ F (MAP ($= x) l)
- MEM_FOLDL
-
⊢ ∀y l. MEM y l ⇔ FOLDL (λl' x. l' ∨ (y = x)) F l
- MEM_EXISTS
-
⊢ ∀x l. MEM x l ⇔ EXISTS ($= x) l
- MEM_DROP_IMP
-
⊢ ∀l m x. MEM x (DROP m l) ⇒ MEM x l
- MEM_COUNT_LIST
-
⊢ ∀m n. MEM m (COUNT_LIST n) ⇔ m < n
- MEM_BUTLASTN
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀x. MEM x (BUTLASTN m l) ⇒ MEM x l
- MAP_SND_FILTER_NEQ
-
⊢ MAP SND (FILTER (λ(x,y). y ≠ z) ls) = FILTER (λy. z ≠ y) (MAP SND ls)
- MAP_REVERSE
-
⊢ ∀f l. MAP f (REVERSE l) = REVERSE (MAP f l)
- map_replicate
-
⊢ ∀f n x. MAP f (REPLICATE n x) = REPLICATE n (f x)
- MAP_FST_funs
-
⊢ MAP (λ(x,y,z). x) funs = MAP FST funs
- MAP_FOLDR
-
⊢ ∀f l. MAP f l = FOLDR (λx l'. f x::l') [] l
- MAP_FOLDL
-
⊢ ∀f l. MAP f l = FOLDL (λl' x. SNOC (f x) l') [] l
- MAP_FLAT
-
⊢ ∀f l. MAP f (FLAT l) = FLAT (MAP (MAP f) l)
- MAP_FILTER
-
⊢ ∀f P l. (∀x. P (f x) ⇔ P x) ⇒ (MAP f (FILTER P l) = FILTER P (MAP f l))
- MAP_COUNT_LIST
-
⊢ MAP f (COUNT_LIST n) = GENLIST f n
- LUPDATE_APPEND2
-
⊢ ∀l1 l2 n x.
LENGTH l1 ≤ n ⇒
(LUPDATE x n (l1 ++ l2) = l1 ++ LUPDATE x (n − LENGTH l1) l2)
- LUPDATE_APPEND1
-
⊢ ∀l1 l2 n x. n < LENGTH l1 ⇒ (LUPDATE x n (l1 ++ l2) = LUPDATE x n l1 ++ l2)
- longest_prefix_UNIQUE
-
⊢ s ≠ ∅ ∧ is_measure_maximal LENGTH (common_prefixes s) x ∧
is_measure_maximal LENGTH (common_prefixes s) y ⇒
(x = y)
- longest_prefix_SING
-
⊢ longest_prefix {s} = s
- longest_prefix_PAIR
-
⊢ (longest_prefix {[]; ys} = []) ∧ (longest_prefix {xs; []} = []) ∧
(longest_prefix {x::xs; y::ys} =
if x = y then x::longest_prefix {xs; ys} else [])
- longest_prefix_NIL
-
⊢ [] ∈ s ⇒ (longest_prefix s = [])
- longest_prefix_EMPTY
-
⊢ longest_prefix ∅ = []
- LIST_TO_SET_EQ_SING
-
⊢ ∀x ls. (LIST_TO_SET ls = {x}) ⇔ ls ≠ [] ∧ EVERY ($= x) ls
- LIST_REL_REVERSE_EQ
-
⊢ LIST_REL R (REVERSE l1) (REVERSE l2) ⇔ LIST_REL R l1 l2
- LIST_REL_REPLICATE_same
-
⊢ LIST_REL P (REPLICATE n x) (REPLICATE n y) ⇔ n > 0 ⇒ P x y
- list_rel_lastn
-
⊢ ∀f l1 l2 n.
n ≤ LENGTH l1 ∧ LIST_REL f l1 l2 ⇒ LIST_REL f (LASTN n l1) (LASTN n l2)
- LIST_REL_GENLIST
-
⊢ LIST_REL P (GENLIST f l) (GENLIST g l) ⇔ ∀i. i < l ⇒ P (f i) (g i)
- list_rel_butlastn
-
⊢ ∀f l1 l2 n.
n ≤ LENGTH l1 ∧ LIST_REL f l1 l2 ⇒
LIST_REL f (BUTLASTN n l1) (BUTLASTN n l2)
- LIST_REL_APPEND_SING
-
⊢ LIST_REL R (l1 ++ [x1]) (l2 ++ [x2]) ⇔ LIST_REL R l1 l2 ∧ R x1 x2
- LIST_ELEM_COUNT_THM
-
⊢ (∀e. LIST_ELEM_COUNT e [] = 0) ∧
(∀e l1 l2.
LIST_ELEM_COUNT e (l1 ++ l2) =
LIST_ELEM_COUNT e l1 + LIST_ELEM_COUNT e l2) ∧
(∀e h l. (h = e) ⇒ (LIST_ELEM_COUNT e (h::l) = SUC (LIST_ELEM_COUNT e l))) ∧
∀e h l. h ≠ e ⇒ (LIST_ELEM_COUNT e (h::l) = LIST_ELEM_COUNT e l)
- LIST_ELEM_COUNT_MEM
-
⊢ ∀e l. LIST_ELEM_COUNT e l > 0 ⇔ MEM e l
- LIST_ELEM_COUNT_CARD_EL
-
⊢ ∀ls. LIST_ELEM_COUNT x ls = CARD {n | n < LENGTH ls ∧ (EL n ls = x)}
- LENGTH_UNZIP_SND
-
⊢ ∀l. LENGTH (UNZIP_SND l) = LENGTH l
- LENGTH_UNZIP_FST
-
⊢ ∀l. LENGTH (UNZIP_FST l) = LENGTH l
- LENGTH_SEG
-
⊢ ∀n k l. n + k ≤ LENGTH l ⇒ (LENGTH (SEG n k l) = n)
- LENGTH_SCANR
-
⊢ ∀f e l. LENGTH (SCANR f e l) = SUC (LENGTH l)
- LENGTH_SCANL
-
⊢ ∀f e l. LENGTH (SCANL f e l) = SUC (LENGTH l)
- LENGTH_REPLICATE
-
⊢ ∀n x. LENGTH (REPLICATE n x) = n
- LENGTH_NOT_NULL
-
⊢ ∀l. 0 < LENGTH l ⇔ ¬NULL l
- LENGTH_LASTN
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (LENGTH (LASTN n l) = n)
- LENGTH_FRONT
-
⊢ ∀l. l ≠ [] ⇒ (LENGTH (FRONT l) = PRE (LENGTH l))
- LENGTH_FOLDR
-
⊢ ∀l. LENGTH l = FOLDR (λx l'. SUC l') 0 l
- LENGTH_FOLDL
-
⊢ ∀l. LENGTH l = FOLDL (λl' x. SUC l') 0 l
- LENGTH_FLAT_REPLICATE
-
⊢ ∀n. LENGTH (FLAT (REPLICATE n ls)) = n * LENGTH ls
- LENGTH_FLAT
-
⊢ ∀l. LENGTH (FLAT l) = SUM (MAP LENGTH l)
- LENGTH_FILTER_LESS
-
⊢ ∀P ls. EXISTS ($~ ∘ P) ls ⇒ LENGTH (FILTER P ls) < LENGTH ls
- LENGTH_FILTER_LEQ
-
⊢ ∀P l. LENGTH (FILTER P l) ≤ LENGTH l
- LENGTH_COUNT_LIST
-
⊢ ∀n. LENGTH (COUNT_LIST n) = n
- LENGTH_BUTLASTN
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (LENGTH (BUTLASTN n l) = LENGTH l − n)
- LASTN_SEG
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (LASTN n l = SEG n (LENGTH l − n) l)
- LASTN_REVERSE
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (LASTN n (REVERSE l) = REVERSE (TAKE n l))
- LASTN_MAP
-
⊢ ∀n l. n ≤ LENGTH l ⇒ ∀f. LASTN n (MAP f l) = MAP f (LASTN n l)
- LASTN_LENGTH_ID
-
⊢ ∀l. LASTN (LENGTH l) l = l
- LASTN_LENGTH_APPEND
-
⊢ ∀l2 l1. LASTN (LENGTH l2) (l1 ++ l2) = l2
- LASTN_LASTN
-
⊢ ∀l n m. m ≤ LENGTH l ⇒ n ≤ m ⇒ (LASTN n (LASTN m l) = LASTN n l)
- LASTN_DROP
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (LASTN n l = DROP (LENGTH l − n) l)
- LASTN_CONS
-
⊢ ∀n l. n ≤ LENGTH l ⇒ ∀x. LASTN n (x::l) = LASTN n l
- LASTN_compute
-
⊢ ∀n l.
LASTN n l =
(let
m = LENGTH l
in
if n ≤ m then DROP (m − n) l
else FAIL LASTN $var$(longer than list) n l)
- LASTN_BUTLASTN
-
⊢ ∀n m l.
n + m ≤ LENGTH l ⇒
(LASTN n (BUTLASTN m l) = BUTLASTN m (LASTN (n + m) l))
- LASTN_APPEND2
-
⊢ ∀n l2. n ≤ LENGTH l2 ⇒ ∀l1. LASTN n (l1 ++ l2) = LASTN n l2
- LASTN_APPEND1
-
⊢ ∀l2 n.
LENGTH l2 ≤ n ⇒ ∀l1. LASTN n (l1 ++ l2) = LASTN (n − LENGTH l2) l1 ++ l2
- LASTN_1
-
⊢ ∀l. l ≠ [] ⇒ (LASTN 1 l = [LAST l])
- LASTN
-
⊢ (∀l. LASTN 0 l = []) ∧ ∀n x l. LASTN (SUC n) (SNOC x l) = SNOC x (LASTN n l)
- LAST_LASTN_LAST
-
⊢ ∀n l. n ≤ LENGTH l ⇒ 0 < n ⇒ (LAST (LASTN n l) = LAST l)
- IS_SUFFIX_TRANS
-
⊢ ∀l1 l2 l3. IS_SUFFIX l1 l2 ∧ IS_SUFFIX l2 l3 ⇒ IS_SUFFIX l1 l3
- IS_SUFFIX_REVERSE
-
⊢ ∀l2 l1. IS_SUFFIX (REVERSE l1) (REVERSE l2) ⇔ l2 ≼ l1
- IS_SUFFIX_REFL
-
⊢ ∀l. IS_SUFFIX l l
- IS_SUFFIX_IS_SUBLIST
-
⊢ ∀l1 l2. IS_SUFFIX l1 l2 ⇒ IS_SUBLIST l1 l2
- IS_SUFFIX_CONS2_E
-
⊢ ∀s h t. IS_SUFFIX s (h::t) ⇒ IS_SUFFIX s t
- IS_SUFFIX_CONS
-
⊢ ∀l1 l2 a. IS_SUFFIX l1 l2 ⇒ IS_SUFFIX (a::l1) l2
- IS_SUFFIX_compute
-
⊢ ∀l1 l2. IS_SUFFIX l1 l2 ⇔ REVERSE l2 ≼ REVERSE l1
- IS_SUFFIX_APPEND
-
⊢ ∀l1 l2. IS_SUFFIX l1 l2 ⇔ ∃l. l1 = l ++ l2
- IS_SUBLIST_REVERSE
-
⊢ ∀l1 l2. IS_SUBLIST (REVERSE l1) (REVERSE l2) ⇔ IS_SUBLIST l1 l2
- IS_SUBLIST_APPEND
-
⊢ ∀l1 l2. IS_SUBLIST l1 l2 ⇔ ∃l l'. l1 = l ++ (l2 ++ l')
- IS_PREFIX_TRANS
-
⊢ ∀x y z. y ≼ x ∧ z ≼ y ⇒ z ≼ x
- IS_PREFIX_SNOC
-
⊢ ∀x y z. z ≼ SNOC x y ⇔ z ≼ y ∨ (z = SNOC x y)
- IS_PREFIX_REVERSE
-
⊢ ∀l1 l2. REVERSE l2 ≼ REVERSE l1 ⇔ IS_SUFFIX l1 l2
- IS_PREFIX_REFL
-
⊢ ∀x. x ≼ x
- IS_PREFIX_PREFIX
-
⊢ ∀P l. PREFIX P l ≼ l
- IS_PREFIX_NIL
-
⊢ ∀x. [] ≼ x ∧ (x ≼ [] ⇔ (x = []))
- IS_PREFIX_LENGTH_ANTI
-
⊢ ∀x y. x ≼ y ∧ (LENGTH x = LENGTH y) ⇔ (x = y)
- IS_PREFIX_LENGTH
-
⊢ ∀x y. x ≼ y ⇒ LENGTH x ≤ LENGTH y
- IS_PREFIX_IS_SUBLIST
-
⊢ ∀l1 l2. l2 ≼ l1 ⇒ IS_SUBLIST l1 l2
- is_prefix_el
-
⊢ ∀n l1 l2. l1 ≼ l2 ∧ n < LENGTH l1 ∧ n < LENGTH l2 ⇒ (EL n l1 = EL n l2)
- IS_PREFIX_BUTLAST
-
⊢ ∀x y. FRONT (x::y) ≼ x::y
- IS_PREFIX_APPENDS
-
⊢ ∀a b c. a ++ b ≼ a ++ c ⇔ b ≼ c
- IS_PREFIX_APPEND3
-
⊢ ∀c a. a ≼ a ++ c
- IS_PREFIX_APPEND2
-
⊢ ∀a b c. a ≼ b ++ c ⇒ a ≼ b ∨ b ≼ a
- IS_PREFIX_APPEND1
-
⊢ ∀a b c. a ++ b ≼ c ⇒ a ≼ c
- IS_PREFIX_APPEND
-
⊢ ∀l1 l2. l2 ≼ l1 ⇔ ∃l. l1 = l2 ++ l
- IS_PREFIX_ANTISYM
-
⊢ ∀x y. x ≼ y ∧ y ≼ x ⇒ (x = y)
- IS_PREFIX
-
⊢ (∀l. [] ≼ l ⇔ T) ∧ (∀x l. x::l ≼ [] ⇔ F) ∧
∀x1 l1 x2 l2. x2::l2 ≼ x1::l1 ⇔ (x1 = x2) ∧ l2 ≼ l1
- FRONT_APPEND
-
⊢ ∀l1 l2 e. FRONT (l1 ++ e::l2) = l1 ++ FRONT (e::l2)
- FOLDR_SNOC
-
⊢ ∀f e x l. FOLDR f e (SNOC x l) = FOLDR f (f x e) l
- FOLDR_SINGLE
-
⊢ ∀f e x. FOLDR f e [x] = f x e
- FOLDR_REVERSE
-
⊢ ∀f e l. FOLDR f e (REVERSE l) = FOLDL (λx y. f y x) e l
- FOLDR_MAP_REVERSE
-
⊢ ∀f.
(∀a b c. f a (f b c) = f b (f a c)) ⇒
∀e g l. FOLDR f e (MAP g (REVERSE l)) = FOLDR f e (MAP g l)
- FOLDR_MAP
-
⊢ ∀f e g l. FOLDR f e (MAP g l) = FOLDR (λx y. f (g x) y) e l
- FOLDR_FOLDL_REVERSE
-
⊢ ∀f e l. FOLDR f e l = FOLDL (λx y. f y x) e (REVERSE l)
- FOLDR_FOLDL
-
⊢ ∀f e. MONOID f e ⇒ ∀l. FOLDR f e l = FOLDL f e l
- FOLDR_FILTER_REVERSE
-
⊢ ∀f.
(∀a b c. f a (f b c) = f b (f a c)) ⇒
∀e P l. FOLDR f e (FILTER P (REVERSE l)) = FOLDR f e (FILTER P l)
- FOLDR_FILTER
-
⊢ ∀f e P l.
FOLDR f e (FILTER P l) = FOLDR (λx y. if P x then f x y else y) e l
- FOLDR_CONS_NIL
-
⊢ ∀l. FOLDR CONS [] l = l
- FOLDR_APPEND
-
⊢ ∀f e l1 l2. FOLDR f e (l1 ++ l2) = FOLDR f (FOLDR f e l2) l1
- FOLDL_SNOC_NIL
-
⊢ ∀l. FOLDL (λxs x. SNOC x xs) [] l = l
- FOLDL_SINGLE
-
⊢ ∀f e x. FOLDL f e [x] = f e x
- FOLDL_REVERSE
-
⊢ ∀f e l. FOLDL f e (REVERSE l) = FOLDR (λx y. f y x) e l
- FOLDL_MAP2
-
⊢ ∀f e g l. FOLDL f e (MAP g l) = FOLDL (λx y. f x (g y)) e l
- FOLDL_MAP
-
⊢ ∀f e g l. FOLDL f e (MAP g l) = FOLDL (λx y. f x (g y)) e l
- FOLDL_FOLDR_REVERSE
-
⊢ ∀f e l. FOLDL f e l = FOLDR (λx y. f y x) e (REVERSE l)
- FOLDL_FILTER
-
⊢ ∀f e P l.
FOLDL f e (FILTER P l) = FOLDL (λx y. if P y then f x y else x) e l
- FOLDL_APPEND
-
⊢ ∀f e l1 l2. FOLDL f e (l1 ++ l2) = FOLDL f (FOLDL f e l1) l2
- FLAT_SNOC
-
⊢ ∀x l. FLAT (SNOC x l) = FLAT l ++ x
- FLAT_REVERSE
-
⊢ ∀l. FLAT (REVERSE l) = REVERSE (FLAT (MAP REVERSE l))
- FLAT_FOLDR
-
⊢ ∀l. FLAT l = FOLDR $++ [] l
- FLAT_FOLDL
-
⊢ ∀l. FLAT l = FOLDL $++ [] l
- FLAT_FLAT
-
⊢ ∀l. FLAT (FLAT l) = FLAT (MAP FLAT l)
- FINITE_prefix
-
⊢ FINITE {a | a ≼ b}
- FINITE_common_prefixes
-
⊢ s ≠ ∅ ⇒ FINITE (common_prefixes s)
- FILTER_SNOC
-
⊢ ∀P x l.
FILTER P (SNOC x l) = if P x then SNOC x (FILTER P l) else FILTER P l
- FILTER_MAP
-
⊢ ∀f1 f2 l. FILTER f1 (MAP f2 l) = MAP f2 (FILTER (f1 ∘ f2) l)
- FILTER_IDEM
-
⊢ ∀f l. FILTER f (FILTER f l) = FILTER f l
- FILTER_FOLDR
-
⊢ ∀P l. FILTER P l = FOLDR (λx l'. if P x then x::l' else l') [] l
- FILTER_FOLDL
-
⊢ ∀P l. FILTER P l = FOLDL (λl' x. if P x then SNOC x l' else l') [] l
- FILTER_FLAT
-
⊢ ∀P l. FILTER P (FLAT l) = FLAT (MAP (FILTER P) l)
- FILTER_FILTER
-
⊢ ∀P Q l. FILTER P (FILTER Q l) = FILTER (λx. P x ∧ Q x) l
- FILTER_EQ
-
⊢ ∀P1 P2 l. (FILTER P1 l = FILTER P2 l) ⇔ ∀x. MEM x l ⇒ (P1 x ⇔ P2 x)
- FILTER_COMM
-
⊢ ∀f1 f2 l. FILTER f1 (FILTER f2 l) = FILTER f2 (FILTER f1 l)
- FCOMM_FOLDR_FLAT
-
⊢ ∀g f.
FCOMM g f ⇒
∀e. LEFT_ID g e ⇒ ∀l. FOLDR f e (FLAT l) = FOLDR g e (MAP (FOLDR f e) l)
- FCOMM_FOLDR_APPEND
-
⊢ ∀g f.
FCOMM g f ⇒
∀e.
LEFT_ID g e ⇒
∀l1 l2. FOLDR f e (l1 ++ l2) = g (FOLDR f e l1) (FOLDR f e l2)
- FCOMM_FOLDL_FLAT
-
⊢ ∀f g.
FCOMM f g ⇒
∀e.
RIGHT_ID g e ⇒
∀l. FOLDL f e (FLAT l) = FOLDL g e (MAP (FOLDL f e) l)
- FCOMM_FOLDL_APPEND
-
⊢ ∀f g.
FCOMM f g ⇒
∀e.
RIGHT_ID g e ⇒
∀l1 l2. FOLDL f e (l1 ++ l2) = g (FOLDL f e l1) (FOLDL f e l2)
- EXISTS_TAKE_IMP
-
⊢ ∀l m P. EXISTS P (TAKE m l) ⇒ EXISTS P l
- EXISTS_TAKE
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀P. EXISTS P (TAKE m l) ⇒ EXISTS P l
- EXISTS_SEG
-
⊢ ∀m k l. m + k ≤ LENGTH l ⇒ ∀P. EXISTS P (SEG m k l) ⇒ EXISTS P l
- EXISTS_REVERSE
-
⊢ ∀P l. EXISTS P (REVERSE l) ⇔ EXISTS P l
- EXISTS_LASTN
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀P. EXISTS P (LASTN m l) ⇒ EXISTS P l
- EXISTS_FOLDR_MAP
-
⊢ ∀P l. EXISTS P l ⇔ FOLDR $\/ F (MAP P l)
- EXISTS_FOLDR
-
⊢ ∀P l. EXISTS P l ⇔ FOLDR (λx l'. P x ∨ l') F l
- EXISTS_FOLDL_MAP
-
⊢ ∀P l. EXISTS P l ⇔ FOLDL $\/ F (MAP P l)
- EXISTS_FOLDL
-
⊢ ∀P l. EXISTS P l ⇔ FOLDL (λl' x. l' ∨ P x) F l
- EXISTS_DROP_IMP
-
⊢ ∀l m P. EXISTS P (DROP m l) ⇒ EXISTS P l
- EXISTS_DROP
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀P. EXISTS P (DROP m l) ⇒ EXISTS P l
- EXISTS_DISJ
-
⊢ ∀P Q l. (EXISTS (λx. P x ∨ Q x) l ⇔ EXISTS P l) ∨ EXISTS Q l
- EXISTS_BUTLASTN
-
⊢ ∀m l. m ≤ LENGTH l ⇒ ∀P. EXISTS P (BUTLASTN m l) ⇒ EXISTS P l
- EVERY_TAKE
-
⊢ ∀P l. EVERY P l ⇒ ∀m. m ≤ LENGTH l ⇒ EVERY P (TAKE m l)
- EVERY_SEG
-
⊢ ∀P l. EVERY P l ⇒ ∀m k. m + k ≤ LENGTH l ⇒ EVERY P (SEG m k l)
- EVERY_REVERSE
-
⊢ ∀P l. EVERY P (REVERSE l) ⇔ EVERY P l
- EVERY_REPLICATE
-
⊢ ∀f n x. EVERY f (REPLICATE n x) ⇔ (n = 0) ∨ f x
- EVERY_LASTN
-
⊢ ∀P l. EVERY P l ⇒ ∀m. m ≤ LENGTH l ⇒ EVERY P (LASTN m l)
- EVERY_FOLDR_MAP
-
⊢ ∀P l. EVERY P l ⇔ FOLDR $/\ T (MAP P l)
- EVERY_FOLDR
-
⊢ ∀P l. EVERY P l ⇔ FOLDR (λx l'. P x ∧ l') T l
- EVERY_FOLDL_MAP
-
⊢ ∀P l. EVERY P l ⇔ FOLDL $/\ T (MAP P l)
- EVERY_FOLDL
-
⊢ ∀P l. EVERY P l ⇔ FOLDL (λl' x. l' ∧ P x) T l
- EVERY_DROP
-
⊢ ∀P l. EVERY P l ⇒ ∀m. m ≤ LENGTH l ⇒ EVERY P (DROP m l)
- every_count_list
-
⊢ ∀P n. EVERY P (COUNT_LIST n) ⇔ ∀m. m < n ⇒ P m
- EVERY_BUTLASTN
-
⊢ ∀P l. EVERY P l ⇒ ∀m. m ≤ LENGTH l ⇒ EVERY P (BUTLASTN m l)
- EVERY2_TAKE
-
⊢ ∀P xs ys n. LIST_REL P xs ys ⇒ LIST_REL P (TAKE n xs) (TAKE n ys)
- EVERY2_REVERSE1
-
⊢ ∀l1 l2. LIST_REL R l1 (REVERSE l2) ⇔ LIST_REL R (REVERSE l1) l2
- EVERY2_DROP
-
⊢ ∀R l1 l2 n. LIST_REL R l1 l2 ⇒ LIST_REL R (DROP n l1) (DROP n l2)
- EVERY2_APPEND_suff
-
⊢ LIST_REL R l1 l2 ∧ LIST_REL R l3 l4 ⇒ LIST_REL R (l1 ++ l3) (l2 ++ l4)
- EVERY2_APPEND
-
⊢ LIST_REL R l1 l2 ∧ LIST_REL R l3 l4 ⇔
LIST_REL R (l1 ++ l3) (l2 ++ l4) ∧ (LENGTH l1 = LENGTH l2) ∧
(LENGTH l3 = LENGTH l4)
- ELL_SUC_SNOC
-
⊢ ∀n x l. ELL (SUC n) (SNOC x l) = ELL n l
- ELL_SNOC
-
⊢ ∀n. 0 < n ⇒ ∀x l. ELL n (SNOC x l) = ELL (PRE n) l
- ELL_SEG
-
⊢ ∀n l. n < LENGTH l ⇒ (ELL n l = HD (SEG 1 (PRE (LENGTH l − n)) l))
- ELL_REVERSE_EL
-
⊢ ∀n l. n < LENGTH l ⇒ (ELL n (REVERSE l) = EL n l)
- ELL_REVERSE
-
⊢ ∀n l. n < LENGTH l ⇒ (ELL n (REVERSE l) = ELL (PRE (LENGTH l − n)) l)
- ELL_PRE_LENGTH
-
⊢ ∀l. l ≠ [] ⇒ (ELL (PRE (LENGTH l)) l = HD l)
- ELL_MEM
-
⊢ ∀n l. n < LENGTH l ⇒ MEM (ELL n l) l
- ELL_MAP
-
⊢ ∀n l f. n < LENGTH l ⇒ (ELL n (MAP f l) = f (ELL n l))
- ELL_LENGTH_SNOC
-
⊢ ∀l x. ELL (LENGTH l) (SNOC x l) = if NULL l then x else HD l
- ELL_LENGTH_CONS
-
⊢ ∀l x. ELL (LENGTH l) (x::l) = x
- ELL_LENGTH_APPEND
-
⊢ ∀l1 l2. ¬NULL l1 ⇒ (ELL (LENGTH l2) (l1 ++ l2) = LAST l1)
- ELL_LAST
-
⊢ ∀l. ¬NULL l ⇒ (ELL 0 l = LAST l)
- ELL_EL
-
⊢ ∀n l. n < LENGTH l ⇒ (ELL n l = EL (PRE (LENGTH l − n)) l)
- ELL_CONS
-
⊢ ∀n l. n < LENGTH l ⇒ ∀x. ELL n (x::l) = ELL n l
- ELL_compute
-
⊢ (∀l. ELL 0 l = LAST l) ∧
(∀n l. ELL (NUMERAL (BIT1 n)) l = ELL (NUMERAL (BIT1 n) − 1) (FRONT l)) ∧
∀n l. ELL (NUMERAL (BIT2 n)) l = ELL (NUMERAL (BIT1 n)) (FRONT l)
- ELL_APPEND2
-
⊢ ∀n l2. n < LENGTH l2 ⇒ ∀l1. ELL n (l1 ++ l2) = ELL n l2
- ELL_APPEND1
-
⊢ ∀l2 n. LENGTH l2 ≤ n ⇒ ∀l1. ELL n (l1 ++ l2) = ELL (n − LENGTH l2) l1
- ELL_0_SNOC
-
⊢ ∀l x. ELL 0 (SNOC x l) = x
- EL_SEG
-
⊢ ∀n l. n < LENGTH l ⇒ (EL n l = HD (SEG 1 n l))
- EL_REVERSE_ELL
-
⊢ ∀n l. n < LENGTH l ⇒ (EL n (REVERSE l) = ELL n l)
- EL_REPLICATE
-
⊢ ∀n1 n2 x. n1 < n2 ⇒ (EL n1 (REPLICATE n2 x) = x)
- EL_PRE_LENGTH
-
⊢ ∀l. l ≠ [] ⇒ (EL (PRE (LENGTH l)) l = LAST l)
- EL_MEM
-
⊢ ∀n l. n < LENGTH l ⇒ MEM (EL n l) l
- el_map_count
-
⊢ ∀n f m. n < m ⇒ (EL n (MAP f (COUNT_LIST m)) = f n)
- EL_LENGTH_APPEND_rwt
-
⊢ ¬NULL l2 ∧ (n = LENGTH l1) ⇒ (EL n (l1 ++ l2) = HD l2)
- EL_LENGTH_APPEND
-
⊢ ∀l2 l1. ¬NULL l2 ⇒ (EL (LENGTH l1) (l1 ++ l2) = HD l2)
- EL_FRONT
-
⊢ ∀l n. n < LENGTH (FRONT l) ∧ ¬NULL l ⇒ (EL n (FRONT l) = EL n l)
- EL_ELL
-
⊢ ∀n l. n < LENGTH l ⇒ (EL n l = ELL (PRE (LENGTH l − n)) l)
- EL_COUNT_LIST
-
⊢ ∀m n. m < n ⇒ (EL m (COUNT_LIST n) = m)
- EL_CONS
-
⊢ ∀n. 0 < n ⇒ ∀x l. EL n (x::l) = EL (PRE n) l
- EL_APPEND2
-
⊢ ∀l1 n. LENGTH l1 ≤ n ⇒ ∀l2. EL n (l1 ++ l2) = EL (n − LENGTH l1) l2
- EL_APPEND1
-
⊢ ∀n l1 l2. n < LENGTH l1 ⇒ (EL n (l1 ++ l2) = EL n l1)
- DROP_SNOC
-
⊢ ∀n l. n ≤ LENGTH l ⇒ ∀x. DROP n (SNOC x l) = SNOC x (DROP n l)
- DROP_SEG
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (DROP n l = SEG (LENGTH l − n) n l)
- DROP_REVERSE
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (DROP n (REVERSE l) = REVERSE (BUTLASTN n l))
- DROP_REPLICATE
-
⊢ DROP n (REPLICATE m a) = REPLICATE (m − n) a
- DROP_LENGTH_NIL_rwt
-
⊢ ∀l m. (m = LENGTH l) ⇒ (DROP m l = [])
- DROP_LENGTH_NIL
-
⊢ ∀l. DROP (LENGTH l) l = []
- DROP_LENGTH_APPEND
-
⊢ ∀l1 l2. DROP (LENGTH l1) (l1 ++ l2) = l2
- DROP_LASTN
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (DROP n l = LASTN (LENGTH l − n) l)
- DROP_FUNPOW_TL
-
⊢ ∀n l. DROP n l = FUNPOW TL_T n l
- DROP_EL_CONS
-
⊢ ∀ls n. n < LENGTH ls ⇒ (DROP n ls = EL n ls::DROP (n + 1) ls)
- DROP_DROP_T
-
⊢ ∀n m l. DROP n (DROP m l) = DROP (n + m) l
- DROP_DROP
-
⊢ ∀n m l. n + m ≤ LENGTH l ⇒ (DROP n (DROP m l) = DROP (n + m) l)
- DROP_CONS_EL
-
⊢ ∀n l. n < LENGTH l ⇒ (DROP n l = EL n l::DROP (SUC n) l)
- DROP_APPEND2
-
⊢ ∀l1 n. LENGTH l1 ≤ n ⇒ ∀l2. DROP n (l1 ++ l2) = DROP (n − LENGTH l1) l2
- DROP_APPEND1
-
⊢ ∀n l1. n ≤ LENGTH l1 ⇒ ∀l2. DROP n (l1 ++ l2) = DROP n l1 ++ l2
- DROP_APPEND
-
⊢ ∀n l1 l2. DROP n (l1 ++ l2) = DROP n l1 ++ DROP (n − LENGTH l1) l2
- DROP
-
⊢ (∀l. DROP 0 l = l) ∧ ∀n x l. DROP (SUC n) (x::l) = DROP n l
- count_list_sub1
-
⊢ ∀n. n ≠ 0 ⇒ (COUNT_LIST n = 0::MAP SUC (COUNT_LIST (n − 1)))
- COUNT_LIST_SNOC
-
⊢ (COUNT_LIST 0 = []) ∧ ∀n. COUNT_LIST (SUC n) = SNOC n (COUNT_LIST n)
- COUNT_LIST_GENLIST
-
⊢ ∀n. COUNT_LIST n = GENLIST I n
- COUNT_LIST_COUNT
-
⊢ ∀n. LIST_TO_SET (COUNT_LIST n) = count n
- COUNT_LIST_compute
-
⊢ ∀n. COUNT_LIST n = COUNT_LIST_AUX n []
- COUNT_LIST_AUX_compute
-
⊢ (∀l. COUNT_LIST_AUX 0 l = l) ∧
(∀n l.
COUNT_LIST_AUX (NUMERAL (BIT1 n)) l =
COUNT_LIST_AUX (NUMERAL (BIT1 n) − 1) (NUMERAL (BIT1 n) − 1::l)) ∧
∀n l.
COUNT_LIST_AUX (NUMERAL (BIT2 n)) l =
COUNT_LIST_AUX (NUMERAL (BIT1 n)) (NUMERAL (BIT1 n)::l)
- COUNT_LIST_ADD
-
⊢ ∀n m. COUNT_LIST (n + m) = COUNT_LIST n ++ MAP (λn'. n' + n) (COUNT_LIST m)
- CONS_APPEND
-
⊢ ∀x l. x::l = [x] ++ l
- common_prefixes_PAIR
-
⊢ (common_prefixes {[]; x} = {[]}) ∧ (common_prefixes {x; []} = {[]}) ∧
(common_prefixes {a::xs; b::ys} =
[] INSERT if a = b then IMAGE (CONS a) (common_prefixes {xs; ys}) else ∅)
- common_prefixes_NONEMPTY
-
⊢ common_prefixes s ≠ ∅
- common_prefixes_NIL
-
⊢ [] ∈ s ⇒ (common_prefixes s = {[]})
- common_prefixes_BIGINTER
-
⊢ common_prefixes s = BIGINTER (IMAGE (λl. {p | p ≼ l}) s)
- COMM_MONOID_FOLDR
-
⊢ ∀f. COMM f ⇒ ∀e'. MONOID f e' ⇒ ∀e l. FOLDR f e l = f e (FOLDR f e' l)
- COMM_MONOID_FOLDL
-
⊢ ∀f. COMM f ⇒ ∀e'. MONOID f e' ⇒ ∀e l. FOLDL f e l = f e (FOLDL f e' l)
- COMM_ASSOC_FOLDR_REVERSE
-
⊢ ∀f. COMM f ⇒ ASSOC f ⇒ ∀e l. FOLDR f e (REVERSE l) = FOLDR f e l
- COMM_ASSOC_FOLDL_REVERSE
-
⊢ ∀f. COMM f ⇒ ASSOC f ⇒ ∀e l. FOLDL f e (REVERSE l) = FOLDL f e l
- BUTLASTN_TAKE
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (BUTLASTN n l = TAKE (LENGTH l − n) l)
- BUTLASTN_SUC_FRONT
-
⊢ ∀n l. n < LENGTH l ⇒ (BUTLASTN (SUC n) l = BUTLASTN n (FRONT l))
- BUTLASTN_SEG
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (BUTLASTN n l = SEG (LENGTH l − n) 0 l)
- BUTLASTN_REVERSE
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (BUTLASTN n (REVERSE l) = REVERSE (DROP n l))
- BUTLASTN_MAP
-
⊢ ∀n l. n ≤ LENGTH l ⇒ ∀f. BUTLASTN n (MAP f l) = MAP f (BUTLASTN n l)
- BUTLASTN_LENGTH_NIL
-
⊢ ∀l. BUTLASTN (LENGTH l) l = []
- BUTLASTN_LENGTH_CONS
-
⊢ ∀l x. BUTLASTN (LENGTH l) (x::l) = [x]
- BUTLASTN_LENGTH_APPEND
-
⊢ ∀l2 l1. BUTLASTN (LENGTH l2) (l1 ++ l2) = l1
- BUTLASTN_LASTN_NIL
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (BUTLASTN n (LASTN n l) = [])
- BUTLASTN_LASTN
-
⊢ ∀m n l.
m ≤ n ∧ n ≤ LENGTH l ⇒
(BUTLASTN m (LASTN n l) = LASTN (n − m) (BUTLASTN m l))
- BUTLASTN_FRONT
-
⊢ ∀n l. n < LENGTH l ⇒ (BUTLASTN n (FRONT l) = FRONT (BUTLASTN n l))
- BUTLASTN_CONS
-
⊢ ∀n l. n ≤ LENGTH l ⇒ ∀x. BUTLASTN n (x::l) = x::BUTLASTN n l
- BUTLASTN_compute
-
⊢ ∀n l.
BUTLASTN n l =
(let
m = LENGTH l
in
if n ≤ m then TAKE (m − n) l
else FAIL BUTLASTN $var$(longer than list) n l)
- BUTLASTN_BUTLASTN
-
⊢ ∀m n l. n + m ≤ LENGTH l ⇒ (BUTLASTN n (BUTLASTN m l) = BUTLASTN (n + m) l)
- BUTLASTN_APPEND2
-
⊢ ∀n l1 l2. n ≤ LENGTH l2 ⇒ (BUTLASTN n (l1 ++ l2) = l1 ++ BUTLASTN n l2)
- BUTLASTN_APPEND1
-
⊢ ∀l2 n.
LENGTH l2 ≤ n ⇒ ∀l1. BUTLASTN n (l1 ++ l2) = BUTLASTN (n − LENGTH l2) l1
- BUTLASTN_1
-
⊢ ∀l. l ≠ [] ⇒ (BUTLASTN 1 l = FRONT l)
- BUTLASTN
-
⊢ (∀l. BUTLASTN 0 l = l) ∧ ∀n x l. BUTLASTN (SUC n) (SNOC x l) = BUTLASTN n l
- ASSOC_FOLDR_FLAT
-
⊢ ∀f.
ASSOC f ⇒
∀e. LEFT_ID f e ⇒ ∀l. FOLDR f e (FLAT l) = FOLDR f e (MAP (FOLDR f e) l)
- ASSOC_FOLDL_FLAT
-
⊢ ∀f.
ASSOC f ⇒
∀e.
RIGHT_ID f e ⇒
∀l. FOLDL f e (FLAT l) = FOLDL f e (MAP (FOLDL f e) l)
- ASSOC_APPEND
-
⊢ ASSOC $++
- APPEND_TAKE_LASTN
-
⊢ ∀m n l. (m + n = LENGTH l) ⇒ (TAKE n l ++ LASTN m l = l)
- APPEND_SNOC1
-
⊢ ∀l1 x l2. SNOC x l1 ++ l2 = l1 ++ x::l2
- APPEND_NIL
-
⊢ (∀l. l ++ [] = l) ∧ ∀l. [] ++ l = l
- APPEND_FOLDR
-
⊢ ∀l1 l2. l1 ++ l2 = FOLDR CONS l2 l1
- APPEND_FOLDL
-
⊢ ∀l1 l2. l1 ++ l2 = FOLDL (λl' x. SNOC x l') l1 l2
- APPEND_BUTLASTN_LASTN
-
⊢ ∀n l. n ≤ LENGTH l ⇒ (BUTLASTN n l ++ LASTN n l = l)
- APPEND_BUTLASTN_DROP
-
⊢ ∀m n l. (m + n = LENGTH l) ⇒ (BUTLASTN m l ++ DROP n l = l)
- APPEND_ASSOC_CONS
-
⊢ ∀l1 h l2 l3. l1 ++ h::l2 ++ l3 = l1 ++ h::(l2 ++ l3)
- AND_EL_FOLDR
-
⊢ ∀l. AND_EL l ⇔ FOLDR $/\ T l
- AND_EL_FOLDL
-
⊢ ∀l. AND_EL l ⇔ FOLDL $/\ T l
- ALL_EL_MAP
-
⊢ ∀P f l. EVERY P (MAP f l) ⇔ EVERY (P ∘ f) l
- ALL_DISTINCT_MEM_ZIP_MAP
-
⊢ ∀f x ls.
ALL_DISTINCT ls ⇒
(MEM x (ZIP (ls,MAP f ls)) ⇔ MEM (FST x) ls ∧ (SND x = f (FST x)))
- ALL_DISTINCT_DROP
-
⊢ ∀ls n. ALL_DISTINCT ls ⇒ ALL_DISTINCT (DROP n ls)
- all_distinct_count_list
-
⊢ ∀n. ALL_DISTINCT (COUNT_LIST n)