- UNION_FROM_COUNT
-
⊢ ∀n. from n ∪ count n = 𝕌(:num)
- UNION_COUNT_FROM
-
⊢ ∀n. count n ∪ from n = 𝕌(:num)
- REAL_X_LE_SUP
-
⊢ ∀P x. (∃r. P r) ∧ (∃z. ∀r. P r ⇒ r ≤ z) ∧ (∃r. P r ∧ x ≤ r) ⇒ x ≤ sup P
- REAL_SUP_LE_X
-
⊢ ∀P x. (∃r. P r) ∧ (∀r. P r ⇒ r ≤ x) ⇒ sup P ≤ x
- REAL_NEG_NZ
-
⊢ ∀x. x < 0 ⇒ x ≠ 0
- REAL_MUL_IDEMPOT
-
⊢ ∀r. (r * r = r) ⇔ (r = 0) ∨ (r = 1)
- REAL_LT_RMUL_NEG_0_NEG
-
⊢ ∀x y. x * y < 0 ∧ y < 0 ⇒ 0 < x
- REAL_LT_RMUL_NEG_0
-
⊢ ∀x y. x * y < 0 ∧ 0 < y ⇒ x < 0
- REAL_LT_RMUL_0_NEG
-
⊢ ∀x y. 0 < x * y ∧ y < 0 ⇒ x < 0
- REAL_LT_RDIV_EQ_NEG
-
⊢ ∀x y z. z < 0 ⇒ (y / z < x ⇔ x * z < y)
- REAL_LT_LMUL_NEG_0_NEG
-
⊢ ∀x y. x * y < 0 ∧ x < 0 ⇒ 0 < y
- REAL_LT_LMUL_NEG_0
-
⊢ ∀x y. x * y < 0 ∧ 0 < x ⇒ y < 0
- REAL_LT_LMUL_0_NEG
-
⊢ ∀x y. 0 < x * y ∧ x < 0 ⇒ y < 0
- REAL_LT_LE_MUL
-
⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
- REAL_LE_RDIV_EQ_NEG
-
⊢ ∀x y z. z < 0 ⇒ (y / z ≤ x ⇔ x * z ≤ y)
- REAL_LE_LT_MUL
-
⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
- PREIMAGE_REAL_COMPL4
-
⊢ ∀c. COMPL {x | x < c} = {x | c ≤ x}
- PREIMAGE_REAL_COMPL3
-
⊢ ∀c. COMPL {x | x ≤ c} = {x | c < x}
- PREIMAGE_REAL_COMPL2
-
⊢ ∀c. COMPL {x | c ≤ x} = {x | x < c}
- PREIMAGE_REAL_COMPL1
-
⊢ ∀c. COMPL {x | c < x} = {x | x ≤ c}
- POW_POS_EVEN
-
⊢ ∀x. x < 0 ⇒ (0 < x pow n ⇔ EVEN n)
- POW_NEG_ODD
-
⊢ ∀x. x < 0 ⇒ (x pow n < 0 ⇔ ODD n)
- POW_HALF_SMALL
-
⊢ ∀e. 0 < e ⇒ ∃n. (1 / 2) pow n < e
- POW_HALF_POS
-
⊢ ∀n. 0 < (1 / 2) pow n
- POW_HALF_MONO
-
⊢ ∀m n. m ≤ n ⇒ (1 / 2) pow n ≤ (1 / 2) pow m
- PAIRED_BETA_THM
-
⊢ ∀f z. UNCURRY f z = f (FST z) (SND z)
- PAIR_UNIV
-
⊢ pair 𝕌(:α) 𝕌(:β) = 𝕌(:α # β)
- NUM_2D_BIJ_NZ_INV
-
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × (𝕌(:num) DIFF {0}))
- NUM_2D_BIJ_NZ_ALT_INV
-
⊢ ∃f. BIJ f (𝕌(:num) DIFF {0}) (𝕌(:num) × 𝕌(:num))
- NUM_2D_BIJ_NZ_ALT2_INV
-
⊢ ∃f. BIJ f 𝕌(:num) ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0}))
- NUM_2D_BIJ_NZ_ALT2
-
⊢ ∃f. BIJ f ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0})) 𝕌(:num)
- NUM_2D_BIJ_NZ_ALT
-
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) (𝕌(:num) DIFF {0})
- NUM_2D_BIJ_NZ
-
⊢ ∃f. BIJ f (𝕌(:num) × (𝕌(:num) DIFF {0})) 𝕌(:num)
- NUM_2D_BIJ_INV
-
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num))
- NUM_2D_BIJ
-
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) 𝕌(:num)
- neg_logr
-
⊢ ∀b x. 0 < x ⇒ (-logr b x = logr b x⁻¹)
- neg_lg
-
⊢ ∀x. 0 < x ⇒ (-lg x = lg x⁻¹)
- MINIMAL_SUC_IMP
-
⊢ ∀n p. p (SUC n) ∧ ¬p 0 ∧ (n = minimal (p ∘ SUC)) ⇒ (SUC n = minimal p)
- MINIMAL_SUC
-
⊢ ∀n p.
(SUC n = minimal p) ∧ p (SUC n) ⇔
¬p 0 ∧ (n = minimal (p ∘ SUC)) ∧ p (SUC n)
- MINIMAL_EXISTS_IMP
-
⊢ ∀P. (∃n. P n) ⇒ ∃m. P m ∧ ∀n. n < m ⇒ ¬P n
- MINIMAL_EXISTS0
-
⊢ (∃n. P n) ⇔ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
- MINIMAL_EXISTS
-
⊢ ∀P. (∃n. P n) ⇔ P (minimal P) ∧ ∀n. n < minimal P ⇒ ¬P n
- MINIMAL_EQ_IMP
-
⊢ ∀m p. p m ∧ (∀n. n < m ⇒ ¬p n) ⇒ (m = minimal p)
- MINIMAL_EQ
-
⊢ ∀p m. p m ∧ (m = minimal p) ⇔ p m ∧ ∀n. n < m ⇒ ¬p n
- logr_mul
-
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x * y) = logr b x + logr b y)
- LOGR_MONO_LE_IMP
-
⊢ ∀x y b. 0 < x ∧ x ≤ y ∧ 1 ≤ b ⇒ logr b x ≤ logr b y
- LOGR_MONO_LE
-
⊢ ∀x y b. 0 < x ∧ 0 < y ∧ 1 < b ⇒ (logr b x ≤ logr b y ⇔ x ≤ y)
- logr_inv
-
⊢ ∀b x. 0 < x ⇒ (logr b x⁻¹ = -logr b x)
- logr_div
-
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x / y) = logr b x − logr b y)
- logr_1
-
⊢ ∀b. logr b 1 = 0
- lg_pow
-
⊢ ∀n. lg (2 pow n) = &n
- lg_nonzero
-
⊢ ∀x. x ≠ 0 ∧ 0 ≤ x ⇒ (lg x ≠ 0 ⇔ x ≠ 1)
- lg_mul
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (lg (x * y) = lg x + lg y)
- lg_inv
-
⊢ ∀x. 0 < x ⇒ (lg x⁻¹ = -lg x)
- lg_2
-
⊢ lg 2 = 1
- lg_1
-
⊢ lg 1 = 0
- LE_INF
-
⊢ ∀p r. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ r ≤ x) ⇒ r ≤ inf p
- INF_LE
-
⊢ ∀p r. (∃z. ∀x. x ∈ p ⇒ z ≤ x) ∧ (∃x. x ∈ p ∧ x ≤ r) ⇒ inf p ≤ r
- INF_GREATER
-
⊢ ∀p z. (∃x. x ∈ p) ∧ inf p < z ⇒ ∃x. x ∈ p ∧ x < z
- INF_DEF_ALT
-
⊢ ∀p. inf p = -sup (λr. -r ∈ p)
- INF_CLOSE
-
⊢ ∀p e. (∃x. x ∈ p) ∧ 0 < e ⇒ ∃x. x ∈ p ∧ x < inf p + e
- IN_PROD_SETS
-
⊢ ∀s a b. s ∈ prod_sets a b ⇔ ∃t u. (s = t × u) ∧ t ∈ a ∧ u ∈ b
- IN_PAIR
-
⊢ ∀x X Y. x ∈ pair X Y ⇔ FST x ∈ X ∧ SND x ∈ Y
- IN_o
-
⊢ ∀x f s. x ∈ s ∘ f ⇔ f x ∈ s
- IN_FROM
-
⊢ ∀m n. m ∈ from n ⇔ n ≤ m
- GBIGUNION_IMAGE
-
⊢ ∀s p n. {s | ∃n. p s n} = BIGUNION (IMAGE (λn. {s | p s n}) 𝕌(:γ))
- FROM_0
-
⊢ from 0 = 𝕌(:num)
- finite_enumeration_of_sets_has_max_non_empty
-
⊢ ∀f s.
FINITE s ∧ (∀x. f x ∈ s) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
∃N. ∀n. n ≥ N ⇒ (f n = ∅)
- EQ_T_IMP
-
⊢ ∀x. x ⇔ T ⇒ x
- disjointI
-
⊢ ∀A. (∀a b. a ∈ A ⇒ b ∈ A ⇒ a ≠ b ⇒ DISJOINT a b) ⇒ disjoint A
- disjointD
-
⊢ ∀A a b. disjoint A ⇒ a ∈ A ⇒ b ∈ A ⇒ a ≠ b ⇒ DISJOINT a b
- disjoint_union
-
⊢ ∀A B.
disjoint A ∧ disjoint B ∧ (BIGUNION A ∩ BIGUNION B = ∅) ⇒
disjoint (A ∪ B)
- disjoint_sing
-
⊢ ∀a. disjoint {a}
- DISJOINT_FROM_COUNT
-
⊢ ∀n. DISJOINT (from n) (count n)
- disjoint_empty
-
⊢ disjoint ∅
- DISJOINT_COUNT_FROM
-
⊢ ∀n. DISJOINT (count n) (from n)