Theory "util_prob"

Parents     real_sigma

Signature

Constant Type
disjoint :((α -> bool) -> bool) -> bool
from :num -> num -> bool
lg :real -> real
logr :real -> real -> real
minimal :(num -> bool) -> num
pair :(α -> bool) -> (β -> bool) -> α # β -> bool
powr :real -> real -> real
prod_sets :((α -> bool) -> bool) -> ((β -> bool) -> bool) -> (α # β -> bool) -> bool

Definitions

prod_sets_def
⊢ ∀a b. prod_sets a b = {s × t | s ∈ a ∧ t ∈ b}
powr_def
⊢ ∀x a. x powr a = exp (a * ln x)
pair_def
⊢ ∀X Y. pair X Y = (λ(x,y). x ∈ X ∧ y ∈ Y)
minimal_def
⊢ ∀p. minimal p = @n. p n ∧ ∀m. m < n ⇒ ¬p m
logr_def
⊢ ∀a x. logr a x = ln x / ln a
lg_def
⊢ ∀x. lg x = logr 2 x
from_def
⊢ ∀n. from n = {m | n ≤ m}
disjoint_def
⊢ ∀A. disjoint A ⇔ ∀a b. a ∈ A ∧ b ∈ A ∧ a ≠ b ⇒ DISJOINT a b


Theorems

UNION_FROM_COUNT
⊢ ∀n. from n ∪ count n = 𝕌(:num)
UNION_COUNT_FROM
⊢ ∀n. count n ∪ from n = 𝕌(:num)
REAL_X_LE_SUP
⊢ ∀P x. (∃r. P r) ∧ (∃z. ∀r. P r ⇒ r ≤ z) ∧ (∃r. P r ∧ x ≤ r) ⇒ x ≤ sup P
REAL_SUP_LE_X
⊢ ∀P x. (∃r. P r) ∧ (∀r. P r ⇒ r ≤ x) ⇒ sup P ≤ x
REAL_NEG_NZ
⊢ ∀x. x < 0 ⇒ x ≠ 0
REAL_MUL_IDEMPOT
⊢ ∀r. (r * r = r) ⇔ (r = 0) ∨ (r = 1)
REAL_LT_RMUL_NEG_0_NEG
⊢ ∀x y. x * y < 0 ∧ y < 0 ⇒ 0 < x
REAL_LT_RMUL_NEG_0
⊢ ∀x y. x * y < 0 ∧ 0 < y ⇒ x < 0
REAL_LT_RMUL_0_NEG
⊢ ∀x y. 0 < x * y ∧ y < 0 ⇒ x < 0
REAL_LT_RDIV_EQ_NEG
⊢ ∀x y z. z < 0 ⇒ (y / z < x ⇔ x * z < y)
REAL_LT_LMUL_NEG_0_NEG
⊢ ∀x y. x * y < 0 ∧ x < 0 ⇒ 0 < y
REAL_LT_LMUL_NEG_0
⊢ ∀x y. x * y < 0 ∧ 0 < x ⇒ y < 0
REAL_LT_LMUL_0_NEG
⊢ ∀x y. 0 < x * y ∧ x < 0 ⇒ y < 0
REAL_LT_LE_MUL
⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
REAL_LE_RDIV_EQ_NEG
⊢ ∀x y z. z < 0 ⇒ (y / z ≤ x ⇔ x * z ≤ y)
REAL_LE_LT_MUL
⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
PREIMAGE_REAL_COMPL4
⊢ ∀c. COMPL {x | x < c} = {x | c ≤ x}
PREIMAGE_REAL_COMPL3
⊢ ∀c. COMPL {x | x ≤ c} = {x | c < x}
PREIMAGE_REAL_COMPL2
⊢ ∀c. COMPL {x | c ≤ x} = {x | x < c}
PREIMAGE_REAL_COMPL1
⊢ ∀c. COMPL {x | c < x} = {x | x ≤ c}
POW_POS_EVEN
⊢ ∀x. x < 0 ⇒ (0 < x pow n ⇔ EVEN n)
POW_NEG_ODD
⊢ ∀x. x < 0 ⇒ (x pow n < 0 ⇔ ODD n)
POW_HALF_SMALL
⊢ ∀e. 0 < e ⇒ ∃n. (1 / 2) pow n < e
POW_HALF_POS
⊢ ∀n. 0 < (1 / 2) pow n
POW_HALF_MONO
⊢ ∀m n. m ≤ n ⇒ (1 / 2) pow n ≤ (1 / 2) pow m
PAIRED_BETA_THM
⊢ ∀f z. UNCURRY f z = f (FST z) (SND z)
PAIR_UNIV
⊢ pair 𝕌(:α) 𝕌(:β) = 𝕌(:α # β)
NUM_2D_BIJ_NZ_INV
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × (𝕌(:num) DIFF {0}))
NUM_2D_BIJ_NZ_ALT_INV
⊢ ∃f. BIJ f (𝕌(:num) DIFF {0}) (𝕌(:num) × 𝕌(:num))
NUM_2D_BIJ_NZ_ALT2_INV
⊢ ∃f. BIJ f 𝕌(:num) ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0}))
NUM_2D_BIJ_NZ_ALT2
⊢ ∃f. BIJ f ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0})) 𝕌(:num)
NUM_2D_BIJ_NZ_ALT
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) (𝕌(:num) DIFF {0})
NUM_2D_BIJ_NZ
⊢ ∃f. BIJ f (𝕌(:num) × (𝕌(:num) DIFF {0})) 𝕌(:num)
NUM_2D_BIJ_INV
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num))
NUM_2D_BIJ
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) 𝕌(:num)
neg_logr
⊢ ∀b x. 0 < x ⇒ (-logr b x = logr b x⁻¹)
neg_lg
⊢ ∀x. 0 < x ⇒ (-lg x = lg x⁻¹)
MINIMAL_SUC_IMP
⊢ ∀n p. p (SUC n) ∧ ¬p 0 ∧ (n = minimal (p ∘ SUC)) ⇒ (SUC n = minimal p)
MINIMAL_SUC
⊢ ∀n p.
      (SUC n = minimal p) ∧ p (SUC n) ⇔
      ¬p 0 ∧ (n = minimal (p ∘ SUC)) ∧ p (SUC n)
MINIMAL_EXISTS_IMP
⊢ ∀P. (∃n. P n) ⇒ ∃m. P m ∧ ∀n. n < m ⇒ ¬P n
MINIMAL_EXISTS0
⊢ (∃n. P n) ⇔ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
MINIMAL_EXISTS
⊢ ∀P. (∃n. P n) ⇔ P (minimal P) ∧ ∀n. n < minimal P ⇒ ¬P n
MINIMAL_EQ_IMP
⊢ ∀m p. p m ∧ (∀n. n < m ⇒ ¬p n) ⇒ (m = minimal p)
MINIMAL_EQ
⊢ ∀p m. p m ∧ (m = minimal p) ⇔ p m ∧ ∀n. n < m ⇒ ¬p n
logr_mul
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x * y) = logr b x + logr b y)
LOGR_MONO_LE_IMP
⊢ ∀x y b. 0 < x ∧ x ≤ y ∧ 1 ≤ b ⇒ logr b x ≤ logr b y
LOGR_MONO_LE
⊢ ∀x y b. 0 < x ∧ 0 < y ∧ 1 < b ⇒ (logr b x ≤ logr b y ⇔ x ≤ y)
logr_inv
⊢ ∀b x. 0 < x ⇒ (logr b x⁻¹ = -logr b x)
logr_div
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ (logr b (x / y) = logr b x − logr b y)
logr_1
⊢ ∀b. logr b 1 = 0
lg_pow
⊢ ∀n. lg (2 pow n) = &n
lg_nonzero
⊢ ∀x. x ≠ 0 ∧ 0 ≤ x ⇒ (lg x ≠ 0 ⇔ x ≠ 1)
lg_mul
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (lg (x * y) = lg x + lg y)
lg_inv
⊢ ∀x. 0 < x ⇒ (lg x⁻¹ = -lg x)
lg_2
⊢ lg 2 = 1
lg_1
⊢ lg 1 = 0
LE_INF
⊢ ∀p r. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ r ≤ x) ⇒ r ≤ inf p
INF_LE
⊢ ∀p r. (∃z. ∀x. x ∈ p ⇒ z ≤ x) ∧ (∃x. x ∈ p ∧ x ≤ r) ⇒ inf p ≤ r
INF_GREATER
⊢ ∀p z. (∃x. x ∈ p) ∧ inf p < z ⇒ ∃x. x ∈ p ∧ x < z
INF_DEF_ALT
⊢ ∀p. inf p = -sup (λr. -r ∈ p)
INF_CLOSE
⊢ ∀p e. (∃x. x ∈ p) ∧ 0 < e ⇒ ∃x. x ∈ p ∧ x < inf p + e
IN_PROD_SETS
⊢ ∀s a b. s ∈ prod_sets a b ⇔ ∃t u. (s = t × u) ∧ t ∈ a ∧ u ∈ b
IN_PAIR
⊢ ∀x X Y. x ∈ pair X Y ⇔ FST x ∈ X ∧ SND x ∈ Y
IN_o
⊢ ∀x f s. x ∈ s ∘ f ⇔ f x ∈ s
IN_FROM
⊢ ∀m n. m ∈ from n ⇔ n ≤ m
GBIGUNION_IMAGE
⊢ ∀s p n. {s | ∃n. p s n} = BIGUNION (IMAGE (λn. {s | p s n}) 𝕌(:γ))
FROM_0
⊢ from 0 = 𝕌(:num)
finite_enumeration_of_sets_has_max_non_empty
⊢ ∀f s.
      FINITE s ∧ (∀x. f x ∈ s) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
      ∃N. ∀n. n ≥ N ⇒ (f n = ∅)
EQ_T_IMP
⊢ ∀x. x ⇔ T ⇒ x
disjointI
⊢ ∀A. (∀a b. a ∈ A ⇒ b ∈ A ⇒ a ≠ b ⇒ DISJOINT a b) ⇒ disjoint A
disjointD
⊢ ∀A a b. disjoint A ⇒ a ∈ A ⇒ b ∈ A ⇒ a ≠ b ⇒ DISJOINT a b
disjoint_union
⊢ ∀A B.
      disjoint A ∧ disjoint B ∧ (BIGUNION A ∩ BIGUNION B = ∅) ⇒
      disjoint (A ∪ B)
disjoint_sing
⊢ ∀a. disjoint {a}
DISJOINT_FROM_COUNT
⊢ ∀n. DISJOINT (from n) (count n)
disjoint_empty
⊢ disjoint ∅
DISJOINT_COUNT_FROM
⊢ ∀n. DISJOINT (count n) (from n)