- wZERO_def
-
⊢ wZERO = mkWO ∅
- wobound_def
-
⊢ ∀x w. wobound x w = mkWO (rrestrict (destWO w) (iseg w x))
- wo2wo_def
-
⊢ ∀w1 w2.
wo2wo w1 w2 =
WFREC (λx y. (x,y) WIN w1)
(λf x.
(let
s0 = IMAGE f (iseg w1 x) ;
s1 = IMAGE THE (s0 DELETE NONE)
in
if s1 = elsOf w2 then NONE else wleast w2 s1))
- wleast_def
-
⊢ ∀w s.
wleast w s =
some x.
x ∈ elsOf w ∧ x ∉ s ∧ ∀y. y ∈ elsOf w ∧ y ∉ s ∧ x ≠ y ⇒ (x,y) WIN w
- wellorder_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION wellorder rep
- wellorder_def
-
⊢ ∀R.
wellorder R ⇔
Wellfounded (strict R) ∧ linear_order R (domain R ∪ range R) ∧
reflexive R (domain R ∪ range R)
- wellorder_ABSREP
-
⊢ (∀a. mkWO (destWO a) = a) ∧ ∀r. wellorder r ⇔ (destWO (mkWO r) = r)
- wellfounded_def
-
⊢ ∀R.
Wellfounded R ⇔
∀s. (∃w. w ∈ s) ⇒ ∃min. min ∈ s ∧ ∀w. (w,min) ∈ R ⇒ w ∉ s
- remove_def
-
⊢ ∀e w. remove e w = mkWO {(x,y) | x ≠ e ∧ y ≠ e ∧ (x,y) WLE w}
- poset
-
⊢ ∀l.
poset l ⇔
(∀x. fl l x ⇒ l (x,x)) ∧ (∀x y z. l (x,y) ∧ l (y,z) ⇒ l (x,z)) ∧
∀x y. l (x,y) ∧ l (y,x) ⇒ (x = y)
- orderlt_def
-
⊢ ∀w1 w2. orderlt w1 w2 ⇔ ∃x. x ∈ elsOf w2 ∧ orderiso w1 (wobound x w2)
- orderiso_def
-
⊢ ∀w1 w2.
orderiso w1 w2 ⇔
∃f.
(∀x. x ∈ elsOf w1 ⇒ f x ∈ elsOf w2) ∧
(∀x1 x2. x1 ∈ elsOf w1 ∧ x2 ∈ elsOf w1 ⇒ ((f x1 = f x2) ⇔ (x1 = x2))) ∧
(∀y. y ∈ elsOf w2 ⇒ ∃x. x ∈ elsOf w1 ∧ (f x = y)) ∧
∀x y. (x,y) WIN w1 ⇒ (f x,f y) WIN w2
- iseg_def
-
⊢ ∀w x. iseg w x = {y | (y,x) WIN w}
- fromNatWO_def
-
⊢ ∀n. fromNatWO n = mkWO {(INL i,INL j) | i ≤ j ∧ j < n}
- fl
-
⊢ ∀l x. fl l x ⇔ ∃y. l (x,y) ∨ l (y,x)
- finite_def
-
⊢ ∀w. finite w ⇔ FINITE (elsOf w)
- elsOf_def
-
⊢ ∀w. elsOf w = domain (destWO w) ∪ wrange w
- chain
-
⊢ ∀l P. chain l P ⇔ ∀x y. P x ∧ P y ⇒ l (x,y) ∨ l (y,x)
- ADD1_def
-
⊢ ∀e w.
ADD1 e w =
if e ∈ elsOf w then w
else mkWO (destWO w ∪ {(x,e) | x ∈ elsOf w} ∪ {(e,e)})
- ZL_SUBSETS_BIGUNION_NONEMPTY
-
⊢ ∀P.
(∃x. P x) ∧
(∀c.
(∃x. x ∈ c) ∧ (∀x. x ∈ c ⇒ P x) ∧
(∀x y. x ∈ c ∧ y ∈ c ⇒ x ⊆ y ∨ y ⊆ x) ⇒
P (BIGUNION c)) ⇒
∃a. P a ∧ ∀x. P x ∧ a ⊆ x ⇒ (a = x)
- ZL_SUBSETS_BIGUNION
-
⊢ ∀P.
(∀c.
(∀x. x ∈ c ⇒ P x) ∧ (∀x y. x ∈ c ∧ y ∈ c ⇒ x ⊆ y ∨ y ⊆ x) ⇒
P (BIGUNION c)) ⇒
∃a. P a ∧ ∀x. P x ∧ a ⊆ x ⇒ (a = x)
- ZL_SUBSETS
-
⊢ ∀P.
(∀c.
(∀x. x ∈ c ⇒ P x) ∧ (∀x y. x ∈ c ∧ y ∈ c ⇒ x ⊆ y ∨ y ⊆ x) ⇒
∃z. P z ∧ ∀x. x ∈ c ⇒ x ⊆ z) ⇒
∃a. P a ∧ ∀x. P x ∧ a ⊆ x ⇒ (a = x)
- ZL
-
⊢ ∀l.
poset l ∧ (∃x. (λx. fl l x) x) ∧
(∀P. chain l P ⇒ ∃y. fl l y ∧ ∀x. P x ⇒ l (x,y)) ⇒
∃y. fl l y ∧ ∀x. l (y,x) ⇒ (y = x)
- wobounds_preserve_bijections
-
⊢ BIJ f (elsOf w1) (elsOf w2) ∧ x ∈ elsOf w1 ∧
(∀x y. (x,y) WIN w1 ⇒ (f x,f y) WIN w2) ⇒
BIJ f (elsOf (wobound x w1)) (elsOf (wobound (f x) w2))
- wobound2
-
⊢ (a,b) WIN w ⇒ (wobound a (wobound b w) = wobound a w)
- wo_INDUCTION
-
⊢ ∀P w.
(∀x. (∀y. (y,x) WIN w ⇒ y ∈ elsOf w ⇒ P y) ⇒ x ∈ elsOf w ⇒ P x) ⇒
∀x. x ∈ elsOf w ⇒ P x
- wo2wo_thm
-
⊢ ∀x.
wo2wo w w2 x =
(let
s0 = IMAGE (wo2wo w w2) (iseg w x) ;
s1 = IMAGE THE (s0 DELETE NONE)
in
if s1 = elsOf w2 then NONE else wleast w2 s1)
- wo2wo_ONTO
-
⊢ x ∈ elsOf w1 ∧ (wo2wo w1 w2 x = SOME y) ∧ (y0,y) WIN w2 ⇒
∃x0. x0 ∈ elsOf w1 ∧ (wo2wo w1 w2 x0 = SOME y0)
- wo2wo_mono
-
⊢ (wo2wo w1 w2 x0 = SOME y0) ∧ (wo2wo w1 w2 x = SOME y) ∧ (x0,x) WIN w1 ⇒
(y0,y) WIN w2
- wo2wo_IN_w2
-
⊢ ∀x y. (wo2wo w1 w2 x = SOME y) ⇒ y ∈ elsOf w2
- wo2wo_EQ_SOME_downwards
-
⊢ ∀x y.
(wo2wo w1 w2 x = SOME y) ⇒
∀x0. (x0,x) WIN w1 ⇒ ∃y0. wo2wo w1 w2 x0 = SOME y0
- wo2wo_EQ_NONE_woseg
-
⊢ (wo2wo w1 w2 x = NONE) ⇒ (elsOf w2 = woseg w1 w2 x)
- wo2wo_EQ_NONE
-
⊢ ∀x. (wo2wo w1 w2 x = NONE) ⇒ ∀y. (x,y) WIN w1 ⇒ (wo2wo w1 w2 y = NONE)
- wo2wo_11
-
⊢ x1 ∈ elsOf w1 ∧ x2 ∈ elsOf w1 ∧ (wo2wo w1 w2 x1 = SOME y) ∧
(wo2wo w1 w2 x2 = SOME y) ⇒
(x1 = x2)
- wleast_SUBSET
-
⊢ (wleast w s1 = SOME x) ∧ (wleast w s2 = SOME y) ∧ s1 ⊆ s2 ⇒
(x = y) ∨ (x,y) WIN w
- wleast_IN_wo
-
⊢ (wleast w s = SOME x) ⇒
x ∈ elsOf w ∧ x ∉ s ∧ ∀y. y ∈ elsOf w ∧ y ∉ s ∧ x ≠ y ⇒ (x,y) WIN w
- wleast_EQ_NONE
-
⊢ (wleast w s = NONE) ⇒ elsOf w ⊆ s
- WLE_wZERO
-
⊢ (x,y) WLE wZERO ⇔ F
- WLE_wobound
-
⊢ (x,y) WLE wobound z w ⇔ (x,z) WIN w ∧ (y,z) WIN w ∧ (x,y) WLE w
- WLE_WIN_EQ
-
⊢ (x,y) WLE w ⇔ (x = y) ∧ x ∈ elsOf w ∨ (x,y) WIN w
- WLE_WIN
-
⊢ (x,y) WLE w ⇒ (x = y) ∨ (x,y) WIN w
- WLE_TRANS
-
⊢ (x,y) WLE w ∧ (y,z) WLE w ⇒ (x,z) WLE w
- WLE_elsOf
-
⊢ (x,y) WLE w ⇒ x ∈ elsOf w ∧ y ∈ elsOf w
- WLE_ANTISYM
-
⊢ (x,y) WLE w ∧ (y,x) WLE w ⇒ (x = y)
- WIN_wZERO
-
⊢ (x,y) WIN wZERO ⇔ F
- WIN_wobound
-
⊢ (x,y) WIN wobound z w ⇔ (x,z) WIN w ∧ (y,z) WIN w ∧ (x,y) WIN w
- WIN_WLE
-
⊢ (x,y) WIN w ⇒ (x,y) WLE w
- WIN_WF2
-
⊢ WF (λx y. (x,y) WIN w)
- WIN_WF
-
⊢ Wellfounded (λp. p WIN w)
- WIN_trichotomy
-
⊢ ∀x y. x ∈ elsOf w ∧ y ∈ elsOf w ⇒ (x,y) WIN w ∨ (x = y) ∨ (y,x) WIN w
- WIN_TRANS
-
⊢ (x,y) WIN w ∧ (y,z) WIN w ⇒ (x,z) WIN w
- WIN_remove
-
⊢ (x,y) WIN remove e w ⇔ x ≠ e ∧ y ≠ e ∧ (x,y) WIN w
- WIN_REFL
-
⊢ (x,x) WIN w ⇔ F
- WIN_elsOf
-
⊢ (x,y) WIN w ⇒ x ∈ elsOf w ∧ y ∈ elsOf w
- WIN_ADD1
-
⊢ (x,y) WIN ADD1 e w ⇔ e ∉ elsOf w ∧ x ∈ elsOf w ∧ (y = e) ∨ (x,y) WIN w
- WF_UREC_WF
-
⊢ (∀H.
(∀f g x. (∀z. z ≪ x ⇒ (f z ⇔ g z)) ⇒ (H f x ⇔ H g x)) ⇒
∀f g. (∀x. f x ⇔ H f x) ∧ (∀x. g x ⇔ H g x) ⇒ (f = g)) ⇒
WF $<<
- WF_UREC
-
⊢ WF $<< ⇒
∀H.
(∀f g x. (∀z. z ≪ x ⇒ (f z = g z)) ⇒ (H f x = H g x)) ⇒
∀f g. (∀x. f x = H f x) ∧ (∀x. g x = H g x) ⇒ (f = g)
- WF_REC_num
-
⊢ ∀H.
(∀f g n. (∀m. m < n ⇒ (f m = g m)) ⇒ (H f n = H g n)) ⇒
∃f. ∀n. f n = H f n
- WF_REC_INVARIANT
-
⊢ WF $<< ⇒
∀H S.
(∀f g x.
(∀z. z ≪ x ⇒ (f z = g z) ∧ S z (f z)) ⇒
(H f x = H g x) ∧ S x (H f x)) ⇒
∃f. ∀x. f x = H f x
- WF_REC
-
⊢ WF $<< ⇒
∀H.
(∀f g x. (∀z. z ≪ x ⇒ (f z = g z)) ⇒ (H f x = H g x)) ⇒
∃f. ∀x. f x = H f x
- WF_num
-
⊢ WF $<
- WF_IND
-
⊢ WF $<< ⇔ ∀P. (∀x. (∀y. y ≪ x ⇒ P y) ⇒ P x) ⇒ ∀x. P x
- WF_EQ
-
⊢ WF $<< ⇔ ∀P. (∃x. P x) ⇔ ∃x. P x ∧ ∀y. y ≪ x ⇒ ¬P y
- WF_DCHAIN
-
⊢ WF $<< ⇔ ¬∃s. ∀n. s (SUC n) ≪ s n
- WF
-
⊢ WF $<< ⇔ ∀P. (∃x. P x) ⇒ ∃x. P x ∧ ∀y. y ≪ x ⇒ ¬P y
- WEXTENSION
-
⊢ (w1 = w2) ⇔ ∀a b. (a,b) WLE w1 ⇔ (a,b) WLE w2
- wellorder_SING
-
⊢ ∀x y. wellorder {(x,y)} ⇔ (x = y)
- wellorder_rrestrict
-
⊢ wellorder (rrestrict (destWO w) s)
- wellorder_remove
-
⊢ wellorder {(x,y) | x ≠ e ∧ y ≠ e ∧ (x,y) WLE w}
- wellorder_fromNat_SUM
-
⊢ wellorder {(INL i,INL j) | i ≤ j ∧ j < n}
- wellorder_fromNat
-
⊢ wellorder {(i,j) | i ≤ j ∧ j < n}
- wellorder_EMPTY
-
⊢ wellorder ∅
- wellorder_cases
-
⊢ ∀w. ∃s. wellorder s ∧ (w = mkWO s)
- wellorder_ADD1
-
⊢ e ∉ elsOf w ⇒ wellorder (destWO w ∪ {(x,e) | x ∈ elsOf w} ∪ {(e,e)})
- wellfounded_WF
-
⊢ ∀R. Wellfounded R ⇔ WF (CURRY R)
- wellfounded_subset
-
⊢ ∀r0 r. Wellfounded r ∧ r0 ⊆ r ⇒ Wellfounded r0
- transitive_strict
-
⊢ transitive r ∧ antisym r ⇒ transitive (strict r)
- transitive_rrestrict
-
⊢ transitive r ⇒ transitive (rrestrict r s)
- TARSKI_SET
-
⊢ ∀f. (∀s t. s ⊆ t ⇒ f s ⊆ f t) ⇒ ∃s. f s = s
- strict_UNION
-
⊢ strict (r1 ∪ r2) = strict r1 ∪ strict r2
- strict_subset
-
⊢ r1 ⊆ r2 ⇒ strict r1 ⊆ strict r2
- seteq_wlog
-
⊢ ∀f.
(∀a b. P a b ⇒ P b a) ∧ (∀x a b. P a b ∧ x ∈ f a ⇒ x ∈ f b) ⇒
∀a b. P a b ⇒ (f a = f b)
- rrestrict_SUBSET
-
⊢ ∀r s. rrestrict r s ⊆ r
- reflexive_rrestrict
-
⊢ reflexive r (domain r ∪ range r) ⇒
reflexive (rrestrict r s) (domain (rrestrict r s) ∪ range (rrestrict r s))
- range_IMAGE_ff
-
⊢ range (IMAGE (f ## g) r) = IMAGE g (range r)
- POSET_RESTRICTED_SUBSET
-
⊢ ∀P. poset (λ(x,y). P x ∧ P y ∧ x ⊆ y)
- orderlt_WF
-
⊢ WF orderlt
- orderlt_trichotomy
-
⊢ orderlt w1 w2 ∨ orderiso w1 w2 ∨ orderlt w2 w1
- orderlt_TRANS
-
⊢ ∀w1 w2 w3. orderlt w1 w2 ∧ orderlt w2 w3 ⇒ orderlt w1 w3
- orderlt_REFL
-
⊢ orderlt w w ⇔ F
- orderlt_orderiso
-
⊢ orderiso x0 y0 ∧ orderiso a0 b0 ⇒ (orderlt x0 a0 ⇔ orderlt y0 b0)
- orderiso_wZERO
-
⊢ orderiso wZERO w ⇔ (w = wZERO)
- orderiso_unique
-
⊢ BIJ f1 (elsOf w1) (elsOf w2) ∧ BIJ f2 (elsOf w1) (elsOf w2) ∧
(∀x y. (x,y) WIN w1 ⇒ (f1 x,f1 y) WIN w2) ∧
(∀x y. (x,y) WIN w1 ⇒ (f2 x,f2 y) WIN w2) ⇒
∀x. x ∈ elsOf w1 ⇒ (f1 x = f2 x)
- orderiso_TRANS
-
⊢ ∀w1 w2 w3. orderiso w1 w2 ∧ orderiso w2 w3 ⇒ orderiso w1 w3
- orderiso_thm
-
⊢ orderiso w1 w2 ⇔
∃f. BIJ f (elsOf w1) (elsOf w2) ∧ ∀x y. (x,y) WIN w1 ⇒ (f x,f y) WIN w2
- orderiso_SYM
-
⊢ ∀w1 w2. orderiso w1 w2 ⇒ orderiso w2 w1
- orderiso_REFL
-
⊢ ∀w. orderiso w w
- mono_woseg
-
⊢ (x1,x2) WIN w1 ⇒ woseg w1 w2 x1 ⊆ woseg w1 w2 x2
- mkWO_destWO
-
⊢ ∀a. mkWO (destWO a) = a
- LT_wZERO
-
⊢ orderlt w wZERO ⇔ F
- linear_order_rrestrict
-
⊢ linear_order r (domain r ∪ range r) ⇒
linear_order (rrestrict r s)
(domain (rrestrict r s) ∪ range (rrestrict r s))
- INJECTIVE_LEFT_INVERSE_NONEMPTY
-
⊢ ∀f s t.
(∃x. x ∈ s) ⇒
((∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇔
∃g. (∀y. y ∈ t ⇒ g y ∈ s) ∧ ∀x. x ∈ s ⇒ (g (f x) = x))
- INJ_preserves_wellorder
-
⊢ wellorder r ∧ INJ f (domain r ∪ range r) t ⇒ wellorder (IMAGE (f ## f) r)
- INJ_preserves_transitive
-
⊢ transitive r ∧ INJ f (domain r ∪ range r) t ⇒ transitive (IMAGE (f ## f) r)
- INJ_preserves_linear_order
-
⊢ linear_order r (domain r ∪ range r) ∧ INJ f (domain r ∪ range r) t ⇒
linear_order (IMAGE (f ## f) r) (IMAGE f (domain r ∪ range r))
- INJ_preserves_antisym
-
⊢ antisym r ∧ INJ f (domain r ∪ range r) t ⇒ antisym (IMAGE (f ## f) r)
- IMAGE_wo2wo_SUBSET
-
⊢ woseg w1 w2 x ⊆ elsOf w2
- fromNatWO_11
-
⊢ (fromNatWO i = fromNatWO j) ⇔ (i = j)
- FORALL_NUM
-
⊢ (∀n. P n) ⇔ P 0 ∧ ∀n. P (SUC n)
- FLATTEN_LEMMA
-
⊢ ∀s. (∀x. x ∈ s ⇒ (g (f x) = x)) ⇔ ∀y x. x ∈ s ∧ (y = f x) ⇒ (g y = x)
- FL_RESTRICTED_SUBSET
-
⊢ ∀P. fl (λ(x,y). P x ∧ P y ∧ x ⊆ y) = P
- finite_wZERO
-
⊢ finite wZERO
- finite_iso
-
⊢ orderiso w1 w2 ⇒ (finite w1 ⇔ finite w2)
- elsOf_wZERO
-
⊢ elsOf wZERO = ∅
- elsOf_wobound
-
⊢ elsOf (wobound x w) = {y | (y,x) WIN w}
- elsOf_WLE
-
⊢ x ∈ elsOf w ⇔ (x,x) WLE w
- elsOf_remove
-
⊢ elsOf (remove e w) = elsOf w DELETE e
- elsOf_fromNatWO
-
⊢ elsOf (fromNatWO n) = IMAGE INL (count n)
- elsOf_EQ_EMPTY
-
⊢ (elsOf w = ∅) ⇔ (w = wZERO)
- elsOf_cardeq_iso
-
⊢ INJ f (elsOf wo) 𝕌(:α) ⇒ ∃wo'. orderiso wo wo'
- elsOf_ADD1
-
⊢ elsOf (ADD1 e w) = e INSERT elsOf w
- domain_IMAGE_ff
-
⊢ domain (IMAGE (f ## g) r) = IMAGE f (domain r)
- destWO_mkWO
-
⊢ ∀r. wellorder r ⇒ (destWO (mkWO r) = r)
- antisym_rrestrict
-
⊢ antisym r ⇒ antisym (rrestrict r s)
- allsets_wellorderable
-
⊢ ∀s. ∃wo. elsOf wo = s