Structure borelTheory


Source File Identifier index Theory binding index

signature borelTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val AE_def : thm
    val Borel : thm
    val almost_everywhere_def : thm
    val ext_lborel_def : thm
    val fn_minus_def : thm
    val fn_plus_def : thm
    val indicator_fn_def : thm
    val lambda0_def : thm
    val lborel_def : thm
    val lebesgue_def : thm
    val nonneg_def : thm
    val set_liminf_def : thm
    val set_limsup_def : thm
  
  (*  Theorems  *)
    val AE_ALT : thm
    val AE_I : thm
    val AE_IMP_MEASURABLE_SETS : thm
    val AE_NOT_IN : thm
    val AE_THM : thm
    val AE_all_S : thm
    val AE_all_countable : thm
    val AE_default : thm
    val AE_filter : thm
    val AE_iff_measurable : thm
    val AE_iff_null : thm
    val AE_iff_null_sets : thm
    val AE_impl : thm
    val AE_not_in : thm
    val BOREL_MEASURABLE_INFINITY : thm
    val BOREL_MEASURABLE_SETS : thm
    val BOREL_MEASURABLE_SETS1 : thm
    val BOREL_MEASURABLE_SETS10 : thm
    val BOREL_MEASURABLE_SETS2 : thm
    val BOREL_MEASURABLE_SETS3 : thm
    val BOREL_MEASURABLE_SETS4 : thm
    val BOREL_MEASURABLE_SETS5 : thm
    val BOREL_MEASURABLE_SETS6 : thm
    val BOREL_MEASURABLE_SETS7 : thm
    val BOREL_MEASURABLE_SETS8 : thm
    val BOREL_MEASURABLE_SETS9 : thm
    val BOREL_MEASURABLE_SETS_CC : thm
    val BOREL_MEASURABLE_SETS_CO : thm
    val BOREL_MEASURABLE_SETS_CR : thm
    val BOREL_MEASURABLE_SETS_FINITE : thm
    val BOREL_MEASURABLE_SETS_NOT_SING : thm
    val BOREL_MEASURABLE_SETS_OC : thm
    val BOREL_MEASURABLE_SETS_OO : thm
    val BOREL_MEASURABLE_SETS_OR : thm
    val BOREL_MEASURABLE_SETS_RC : thm
    val BOREL_MEASURABLE_SETS_RO : thm
    val BOREL_MEASURABLE_SETS_SING : thm
    val BOREL_MEASURABLE_SETS_SING' : thm
    val Borel_def : thm
    val Borel_eq_ge : thm
    val Borel_eq_gr : thm
    val Borel_eq_le : thm
    val FN_ABS : thm
    val FN_ABS' : thm
    val FN_DECOMP : thm
    val FN_DECOMP' : thm
    val FN_MINUS_ABS_ZERO : thm
    val FN_MINUS_ADD_LE : thm
    val FN_MINUS_ALT : thm
    val FN_MINUS_ALT' : thm
    val FN_MINUS_CMUL : thm
    val FN_MINUS_CMUL_full : thm
    val FN_MINUS_FMUL : thm
    val FN_MINUS_INFTY_IMP : thm
    val FN_MINUS_LE_ABS : thm
    val FN_MINUS_NOT_INFTY : thm
    val FN_MINUS_NOT_INFTY' : thm
    val FN_MINUS_POS : thm
    val FN_MINUS_POS_ZERO : thm
    val FN_MINUS_REDUCE : thm
    val FN_MINUS_TO_PLUS : thm
    val FN_MINUS_ZERO : thm
    val FN_PLUS_ABS_SELF : thm
    val FN_PLUS_ADD_LE : thm
    val FN_PLUS_ALT : thm
    val FN_PLUS_ALT' : thm
    val FN_PLUS_CMUL : thm
    val FN_PLUS_CMUL_full : thm
    val FN_PLUS_FMUL : thm
    val FN_PLUS_INFTY_IMP : thm
    val FN_PLUS_LE_ABS : thm
    val FN_PLUS_NEG_ZERO : thm
    val FN_PLUS_NOT_INFTY : thm
    val FN_PLUS_NOT_INFTY' : thm
    val FN_PLUS_POS : thm
    val FN_PLUS_POS_ID : thm
    val FN_PLUS_REDUCE : thm
    val FN_PLUS_TO_MINUS : thm
    val FN_PLUS_ZERO : thm
    val FORALL_IMP_AE : thm
    val INDICATOR_FN_ABS : thm
    val INDICATOR_FN_ABS_MUL : thm
    val INDICATOR_FN_CROSS : thm
    val INDICATOR_FN_DIFF : thm
    val INDICATOR_FN_DIFF_SPACE : thm
    val INDICATOR_FN_EMPTY : thm
    val INDICATOR_FN_FCP_CROSS : thm
    val INDICATOR_FN_INTER : thm
    val INDICATOR_FN_INTER_MIN : thm
    val INDICATOR_FN_LE_1 : thm
    val INDICATOR_FN_MONO : thm
    val INDICATOR_FN_MUL_INTER : thm
    val INDICATOR_FN_NOT_INFTY : thm
    val INDICATOR_FN_POS : thm
    val INDICATOR_FN_SING_0 : thm
    val INDICATOR_FN_SING_1 : thm
    val INDICATOR_FN_UNION : thm
    val INDICATOR_FN_UNION_MAX : thm
    val INDICATOR_FN_UNION_MIN : thm
    val IN_LIMINF : thm
    val IN_LIMSUP : thm
    val IN_MEASURABLE_BOREL : thm
    val IN_MEASURABLE_BOREL_2D_FUNCTION : thm
    val IN_MEASURABLE_BOREL_2D_VECTOR : thm
    val IN_MEASURABLE_BOREL_ABS : thm
    val IN_MEASURABLE_BOREL_ABS' : thm
    val IN_MEASURABLE_BOREL_ADD : thm
    val IN_MEASURABLE_BOREL_ADD' : thm
    val IN_MEASURABLE_BOREL_AE_EQ : thm
    val IN_MEASURABLE_BOREL_ALL : thm
    val IN_MEASURABLE_BOREL_ALL_MEASURE : thm
    val IN_MEASURABLE_BOREL_ALT1 : thm
    val IN_MEASURABLE_BOREL_ALT1_IMP : thm
    val IN_MEASURABLE_BOREL_ALT2 : thm
    val IN_MEASURABLE_BOREL_ALT2_IMP : thm
    val IN_MEASURABLE_BOREL_ALT3 : thm
    val IN_MEASURABLE_BOREL_ALT3_IMP : thm
    val IN_MEASURABLE_BOREL_ALT4 : thm
    val IN_MEASURABLE_BOREL_ALT4_IMP : thm
    val IN_MEASURABLE_BOREL_ALT5 : thm
    val IN_MEASURABLE_BOREL_ALT5_IMP : thm
    val IN_MEASURABLE_BOREL_ALT6 : thm
    val IN_MEASURABLE_BOREL_ALT6_IMP : thm
    val IN_MEASURABLE_BOREL_ALT7 : thm
    val IN_MEASURABLE_BOREL_ALT7_IMP : thm
    val IN_MEASURABLE_BOREL_ALT8 : thm
    val IN_MEASURABLE_BOREL_ALT9 : thm
    val IN_MEASURABLE_BOREL_BOREL_ABS : thm
    val IN_MEASURABLE_BOREL_BOREL_I : thm
    val IN_MEASURABLE_BOREL_CC : thm
    val IN_MEASURABLE_BOREL_CMUL : thm
    val IN_MEASURABLE_BOREL_CMUL_INDICATOR : thm
    val IN_MEASURABLE_BOREL_CMUL_INDICATOR' : thm
    val IN_MEASURABLE_BOREL_CO : thm
    val IN_MEASURABLE_BOREL_CONST : thm
    val IN_MEASURABLE_BOREL_CONST' : thm
    val IN_MEASURABLE_BOREL_CR : thm
    val IN_MEASURABLE_BOREL_EQ : thm
    val IN_MEASURABLE_BOREL_EQ' : thm
    val IN_MEASURABLE_BOREL_FN_MINUS : thm
    val IN_MEASURABLE_BOREL_FN_PLUS : thm
    val IN_MEASURABLE_BOREL_IMP : thm
    val IN_MEASURABLE_BOREL_IMP_BOREL : thm
    val IN_MEASURABLE_BOREL_IMP_BOREL' : thm
    val IN_MEASURABLE_BOREL_INDICATOR : thm
    val IN_MEASURABLE_BOREL_LE : thm
    val IN_MEASURABLE_BOREL_LT : thm
    val IN_MEASURABLE_BOREL_MAX : thm
    val IN_MEASURABLE_BOREL_MAXIMAL : thm
    val IN_MEASURABLE_BOREL_MIN : thm
    val IN_MEASURABLE_BOREL_MINIMAL : thm
    val IN_MEASURABLE_BOREL_MINUS : thm
    val IN_MEASURABLE_BOREL_MONO_SUP : thm
    val IN_MEASURABLE_BOREL_MUL : thm
    val IN_MEASURABLE_BOREL_MUL_INDICATOR : thm
    val IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ : thm
    val IN_MEASURABLE_BOREL_NEGINF : thm
    val IN_MEASURABLE_BOREL_NOT_NEGINF : thm
    val IN_MEASURABLE_BOREL_NOT_POSINF : thm
    val IN_MEASURABLE_BOREL_NOT_SING : thm
    val IN_MEASURABLE_BOREL_OC : thm
    val IN_MEASURABLE_BOREL_OO : thm
    val IN_MEASURABLE_BOREL_OR : thm
    val IN_MEASURABLE_BOREL_PLUS_MINUS : thm
    val IN_MEASURABLE_BOREL_POSINF : thm
    val IN_MEASURABLE_BOREL_POW : thm
    val IN_MEASURABLE_BOREL_RC : thm
    val IN_MEASURABLE_BOREL_RO : thm
    val IN_MEASURABLE_BOREL_SING : thm
    val IN_MEASURABLE_BOREL_SQR : thm
    val IN_MEASURABLE_BOREL_SUB : thm
    val IN_MEASURABLE_BOREL_SUB' : thm
    val IN_MEASURABLE_BOREL_SUM : thm
    val IN_MEASURABLE_BOREL_SUMINF : thm
    val IN_MEASURABLE_BOREL_TIMES : thm
    val IN_MEASURABLE_BOREL_TIMES' : thm
    val MEASURABLE_BOREL : thm
    val MEASURE_SPACE_LBOREL : thm
    val SIGMA_ALGEBRA_BOREL : thm
    val SIGMA_ALGEBRA_BOREL_2D : thm
    val SIGMA_FINITE_LBOREL : thm
    val SPACE_BOREL : thm
    val SPACE_BOREL_2D : thm
    val absolutely_integrable_on_indicator : thm
    val borel_eq_real_set : thm
    val borel_imp_lebesgue_measurable : thm
    val borel_imp_lebesgue_sets : thm
    val countably_additive_lebesgue : thm
    val fn_minus : thm
    val fn_minus_mul_indicator : thm
    val fn_plus : thm
    val fn_plus_mul_indicator : thm
    val has_integral_indicator_UNIV : thm
    val has_integral_interval_cube : thm
    val in_borel_measurable_continuous_on : thm
    val in_borel_measurable_from_Borel : thm
    val in_borel_measurable_imp : thm
    val in_measurable_sigma_pow : thm
    val in_sets_lebesgue : thm
    val in_sets_lebesgue_imp : thm
    val indicator_fn_general_cross : thm
    val indicator_fn_normal : thm
    val indicator_fn_split : thm
    val indicator_fn_suminf : thm
    val integrable_indicator_UNIV : thm
    val integral_indicator_UNIV : thm
    val integral_one : thm
    val lambda0_empty : thm
    val lambda0_not_infty : thm
    val lambda_closed_interval : thm
    val lambda_closed_interval_content : thm
    val lambda_empty : thm
    val lambda_eq : thm
    val lambda_eq_lebesgue : thm
    val lambda_not_infty : thm
    val lambda_open_interval : thm
    val lambda_prop : thm
    val lambda_sing : thm
    val lborel0_additive : thm
    val lborel0_finite_additive : thm
    val lborel0_positive : thm
    val lborel0_premeasure : thm
    val lborel0_subadditive : thm
    val lborel_subset_lebesgue : thm
    val lebesgue_closed_interval : thm
    val lebesgue_closed_interval_content : thm
    val lebesgue_empty : thm
    val lebesgue_eq_lambda : thm
    val lebesgue_measure_iff_LIMSEQ : thm
    val lebesgue_of_negligible : thm
    val lebesgue_open_interval : thm
    val lebesgue_sing : thm
    val liminf_limsup : thm
    val liminf_limsup_sp : thm
    val limseq_indicator_BIGUNION : thm
    val limsup_suminf_indicator : thm
    val limsup_suminf_indicator_space : thm
    val m_space_lborel : thm
    val measure_lebesgue : thm
    val measure_liminf : thm
    val measure_limsup : thm
    val measure_limsup_finite : thm
    val measure_space_lborel : thm
    val measure_space_lebesgue : thm
    val negligible_in_lebesgue : thm
    val nonneg_abs : thm
    val nonneg_fn_abs : thm
    val nonneg_fn_minus : thm
    val nonneg_fn_plus : thm
    val positive_lebesgue : thm
    val seq_le_imp_lim_le : thm
    val seq_mono_le : thm
    val set_limsup_alt : thm
    val sets_lborel : thm
    val sets_lebesgue : thm
    val sigma_algebra_lebesgue : thm
    val sigma_finite_lborel : thm
    val space_lborel : thm
    val space_lebesgue : thm
    val sup_sequence : thm
  
  val borel_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [measure] Parent theory of "borel"
   
   [real_borel] Parent theory of "borel"
   
   [AE_def]  Definition
      
      ⊒ $AE = (λP. almost_everywhere lebesgue P)
   
   [Borel]  Definition
      
      ⊒ Borel =
        (π•Œ(:extreal),
         {B' |
          βˆƒB S.
            B' = IMAGE Normal B βˆͺ S ∧ B ∈ subsets borel ∧
            S ∈ {βˆ…; {βˆ’βˆž}; {+∞}; {βˆ’βˆž; +∞}}})
   
   [almost_everywhere_def]  Definition
      
      ⊒ βˆ€m P.
          almost_everywhere m P ⇔
          βˆƒN. null_set m N ∧ βˆ€x. x ∈ m_space m DIFF N β‡’ P x
   
   [ext_lborel_def]  Definition
      
      ⊒ ext_lborel = (space Borel,subsets Borel,lambda ∘ real_set)
   
   [fn_minus_def]  Definition
      
      ⊒ βˆ€f. f⁻ = (Ξ»x. if f x < 0 then -f x else 0)
   
   [fn_plus_def]  Definition
      
      ⊒ βˆ€f. f⁺ = (Ξ»x. if 0 < f x then f x else 0)
   
   [indicator_fn_def]  Definition
      
      ⊒ βˆ€s. πŸ™ s = (Ξ»x. if x ∈ s then 1 else 0)
   
   [lambda0_def]  Definition
      
      ⊒ βˆ€a b. a ≀ b β‡’ lambda0 (right_open_interval a b) = Normal (b βˆ’ a)
   
   [lborel_def]  Definition
      
      ⊒ (βˆ€s. s ∈ subsets right_open_intervals β‡’ lambda s = lambda0 s) ∧
        (m_space lborel,measurable_sets lborel) = borel ∧
        measure_space lborel
   
   [lebesgue_def]  Definition
      
      ⊒ lebesgue =
        (π•Œ(:real),{A | βˆ€n. indicator A integrable_on line n},
         (Ξ»A. sup {Normal (integral (line n) (indicator A)) | n ∈ π•Œ(:num)}))
   
   [nonneg_def]  Definition
      
      ⊒ βˆ€f. nonneg f ⇔ βˆ€x. 0 ≀ f x
   
   [set_liminf_def]  Definition
      
      ⊒ βˆ€E. liminf E =
            BIGUNION (IMAGE (Ξ»m. BIGINTER {E n | m ≀ n}) π•Œ(:num))
   
   [set_limsup_def]  Definition
      
      ⊒ βˆ€E. limsup E =
            BIGINTER (IMAGE (Ξ»m. BIGUNION {E n | m ≀ n}) π•Œ(:num))
   
   [AE_ALT]  Theorem
      
      ⊒ βˆ€m P.
          (AE x::m. P x) ⇔
          βˆƒN. null_set m N ∧ {x | x ∈ m_space m ∧ Β¬P x} βŠ† N
   
   [AE_I]  Theorem
      
      ⊒ βˆ€N M P.
          null_set M N β‡’ {x | x ∈ m_space M ∧ Β¬P x} βŠ† N β‡’ AE x::M. P x
   
   [AE_IMP_MEASURABLE_SETS]  Theorem
      
      ⊒ βˆ€m P.
          complete_measure_space m ∧ (AE x::m. P x) β‡’
          {x | x ∈ m_space m ∧ P x} ∈ measurable_sets m
   
   [AE_NOT_IN]  Theorem
      
      ⊒ βˆ€N M. null_set M N β‡’ AE x::M. x βˆ‰ N
   
   [AE_THM]  Theorem
      
      ⊒ βˆ€m P. (AE x::m. P x) ⇔ almost_everywhere m P
   
   [AE_all_S]  Theorem
      
      ⊒ βˆ€M S' P.
          measure_space M β‡’
          (βˆ€i. S' i β‡’ AE x::M. (Ξ»x. P i x) x) β‡’
          βˆ€i'. AE x::M. (Ξ»x. S' i' β‡’ P i' x) x
   
   [AE_all_countable]  Theorem
      
      ⊒ βˆ€t M P.
          measure_space M β‡’
          ((βˆ€i. COUNTABLE (t i) β‡’ AE x::M. (Ξ»x. P i x) x) ⇔
           βˆ€i. AE x::M. (Ξ»x. P i x) x)
   
   [AE_default]  Theorem
      
      ⊒ βˆ€P. (AE x. P x) ⇔ AE x::lebesgue. P x
   
   [AE_filter]  Theorem
      
      ⊒ βˆ€m P.
          (AE x::m. P x) ⇔
          βˆƒN. N ∈ null_set m ∧ {x | x ∈ m_space m ∧ x βˆ‰ P} βŠ† N
   
   [AE_iff_measurable]  Theorem
      
      ⊒ βˆ€N M P.
          measure_space M ∧ N ∈ measurable_sets M β‡’
          {x | x ∈ m_space M ∧ Β¬P x} = N β‡’
          ((AE x::M. P x) ⇔ measure M N = 0)
   
   [AE_iff_null]  Theorem
      
      ⊒ βˆ€M P.
          measure_space M ∧ {x | x ∈ m_space M ∧ Β¬P x} ∈ measurable_sets M β‡’
          ((AE x::M. P x) ⇔ null_set M {x | x ∈ m_space M ∧ Β¬P x})
   
   [AE_iff_null_sets]  Theorem
      
      ⊒ βˆ€N M.
          measure_space M ∧ N ∈ measurable_sets M β‡’
          (null_set M N ⇔ AE x::M. {x | Β¬N x} x)
   
   [AE_impl]  Theorem
      
      ⊒ βˆ€P M Q.
          measure_space M β‡’ (P β‡’ AE x::M. Q x) β‡’ AE x::M. (Ξ»x. P β‡’ Q x) x
   
   [AE_not_in]  Theorem
      
      ⊒ βˆ€N M. null_set M N β‡’ AE x::M. {x | Β¬N x} x
   
   [BOREL_MEASURABLE_INFINITY]  Theorem
      
      ⊒ {+∞} ∈ subsets Borel ∧ {βˆ’βˆž} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS]  Theorem
      
      ⊒ (βˆ€c. {x | x < c} ∈ subsets Borel) ∧
        (βˆ€c. {x | c < x} ∈ subsets Borel) ∧
        (βˆ€c. {x | x ≀ c} ∈ subsets Borel) ∧
        (βˆ€c. {x | c ≀ x} ∈ subsets Borel) ∧
        (βˆ€c d. {x | c ≀ x ∧ x < d} ∈ subsets Borel) ∧
        (βˆ€c d. {x | c < x ∧ x ≀ d} ∈ subsets Borel) ∧
        (βˆ€c d. {x | c ≀ x ∧ x ≀ d} ∈ subsets Borel) ∧
        (βˆ€c d. {x | c < x ∧ x < d} ∈ subsets Borel) ∧
        (βˆ€c. {c} ∈ subsets Borel) ∧ βˆ€c. {x | x β‰  c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS1]  Theorem
      
      ⊒ βˆ€c. {x | x < c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS10]  Theorem
      
      ⊒ βˆ€c. {x | x β‰  c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS2]  Theorem
      
      ⊒ βˆ€c. {x | c ≀ x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS3]  Theorem
      
      ⊒ βˆ€c. {x | x ≀ c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS4]  Theorem
      
      ⊒ βˆ€c. {x | c < x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS5]  Theorem
      
      ⊒ βˆ€c d. {x | c ≀ x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS6]  Theorem
      
      ⊒ βˆ€c d. {x | c < x ∧ x ≀ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS7]  Theorem
      
      ⊒ βˆ€c d. {x | c ≀ x ∧ x ≀ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS8]  Theorem
      
      ⊒ βˆ€c d. {x | c < x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS9]  Theorem
      
      ⊒ βˆ€c. {c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_CC]  Theorem
      
      ⊒ βˆ€c d. {x | c ≀ x ∧ x ≀ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_CO]  Theorem
      
      ⊒ βˆ€c d. {x | c ≀ x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_CR]  Theorem
      
      ⊒ βˆ€c. {x | c ≀ x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_FINITE]  Theorem
      
      ⊒ βˆ€s. FINITE s β‡’ s ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_NOT_SING]  Theorem
      
      ⊒ βˆ€c. {x | x β‰  c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_OC]  Theorem
      
      ⊒ βˆ€c d. {x | c < x ∧ x ≀ d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_OO]  Theorem
      
      ⊒ βˆ€c d. {x | c < x ∧ x < d} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_OR]  Theorem
      
      ⊒ βˆ€c. {x | c < x} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_RC]  Theorem
      
      ⊒ βˆ€c. {x | x ≀ c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_RO]  Theorem
      
      ⊒ βˆ€c. {x | x < c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_SING]  Theorem
      
      ⊒ βˆ€c. {c} ∈ subsets Borel
   
   [BOREL_MEASURABLE_SETS_SING']  Theorem
      
      ⊒ βˆ€c. {x | x = c} ∈ subsets Borel
   
   [Borel_def]  Theorem
      
      ⊒ Borel = sigma π•Œ(:extreal) (IMAGE (Ξ»a. {x | x < Normal a}) π•Œ(:real))
   
   [Borel_eq_ge]  Theorem
      
      ⊒ Borel = sigma π•Œ(:extreal) (IMAGE (Ξ»a. {x | Normal a ≀ x}) π•Œ(:real))
   
   [Borel_eq_gr]  Theorem
      
      ⊒ Borel = sigma π•Œ(:extreal) (IMAGE (Ξ»a. {x | Normal a < x}) π•Œ(:real))
   
   [Borel_eq_le]  Theorem
      
      ⊒ Borel = sigma π•Œ(:extreal) (IMAGE (Ξ»a. {x | x ≀ Normal a}) π•Œ(:real))
   
   [FN_ABS]  Theorem
      
      ⊒ βˆ€f x. (abs ∘ f) x = f⁺ x + f⁻ x
   
   [FN_ABS']  Theorem
      
      ⊒ βˆ€f. abs ∘ f = (Ξ»x. f⁺ x + f⁻ x)
   
   [FN_DECOMP]  Theorem
      
      ⊒ βˆ€f x. f x = f⁺ x βˆ’ f⁻ x
   
   [FN_DECOMP']  Theorem
      
      ⊒ βˆ€f. f = (Ξ»x. f⁺ x βˆ’ f⁻ x)
   
   [FN_MINUS_ABS_ZERO]  Theorem
      
      ⊒ βˆ€f. (abs ∘ f)⁻ = (Ξ»x. 0)
   
   [FN_MINUS_ADD_LE]  Theorem
      
      ⊒ βˆ€f g x.
          f x β‰  βˆ’βˆž ∧ g x β‰  βˆ’βˆž ∨ f x β‰  +∞ ∧ g x β‰  +∞ β‡’
          (Ξ»x. f x + g x)⁻ x ≀ f⁻ x + g⁻ x
   
   [FN_MINUS_ALT]  Theorem
      
      ⊒ βˆ€f. f⁻ = (Ξ»x. -min (f x) 0)
   
   [FN_MINUS_ALT']  Theorem
      
      ⊒ βˆ€f. f⁻ = (Ξ»x. -min 0 (f x))
   
   [FN_MINUS_CMUL]  Theorem
      
      ⊒ βˆ€f c.
          (0 ≀ c β‡’ (Ξ»x. Normal c * f x)⁻ = (Ξ»x. Normal c * f⁻ x)) ∧
          (c ≀ 0 β‡’ (Ξ»x. Normal c * f x)⁻ = (Ξ»x. -Normal c * f⁺ x))
   
   [FN_MINUS_CMUL_full]  Theorem
      
      ⊒ βˆ€f c.
          (0 ≀ c β‡’ (Ξ»x. c * f x)⁻ = (Ξ»x. c * f⁻ x)) ∧
          (c ≀ 0 β‡’ (Ξ»x. c * f x)⁻ = (Ξ»x. -c * f⁺ x))
   
   [FN_MINUS_FMUL]  Theorem
      
      ⊒ βˆ€f c. (βˆ€x. 0 ≀ c x) β‡’ (Ξ»x. c x * f x)⁻ = (Ξ»x. c x * f⁻ x)
   
   [FN_MINUS_INFTY_IMP]  Theorem
      
      ⊒ βˆ€f x. f⁻ x = +∞ β‡’ f⁺ x = 0
   
   [FN_MINUS_LE_ABS]  Theorem
      
      ⊒ βˆ€f x. f⁻ x ≀ abs (f x)
   
   [FN_MINUS_NOT_INFTY]  Theorem
      
      ⊒ βˆ€f. (βˆ€x. f x β‰  βˆ’βˆž) β‡’ βˆ€x. f⁻ x β‰  +∞
   
   [FN_MINUS_NOT_INFTY']  Theorem
      
      ⊒ βˆ€f x. f x β‰  βˆ’βˆž β‡’ f⁻ x β‰  +∞
   
   [FN_MINUS_POS]  Theorem
      
      ⊒ βˆ€g x. 0 ≀ g⁻ x
   
   [FN_MINUS_POS_ZERO]  Theorem
      
      ⊒ βˆ€g. (βˆ€x. 0 ≀ g x) β‡’ g⁻ = (Ξ»x. 0)
   
   [FN_MINUS_REDUCE]  Theorem
      
      ⊒ βˆ€f x. 0 ≀ f x β‡’ f⁻ x = 0
   
   [FN_MINUS_TO_PLUS]  Theorem
      
      ⊒ βˆ€f. (Ξ»x. -f x)⁻ = f⁺
   
   [FN_MINUS_ZERO]  Theorem
      
      ⊒ (λx. 0)⁻ = (λx. 0)
   
   [FN_PLUS_ABS_SELF]  Theorem
      
      ⊒ βˆ€f. (abs ∘ f)⁺ = abs ∘ f
   
   [FN_PLUS_ADD_LE]  Theorem
      
      ⊒ βˆ€f g x. (Ξ»x. f x + g x)⁺ x ≀ f⁺ x + g⁺ x
   
   [FN_PLUS_ALT]  Theorem
      
      ⊒ βˆ€f. f⁺ = (Ξ»x. max (f x) 0)
   
   [FN_PLUS_ALT']  Theorem
      
      ⊒ βˆ€f. f⁺ = (Ξ»x. max 0 (f x))
   
   [FN_PLUS_CMUL]  Theorem
      
      ⊒ βˆ€f c.
          (0 ≀ c β‡’ (Ξ»x. Normal c * f x)⁺ = (Ξ»x. Normal c * f⁺ x)) ∧
          (c ≀ 0 β‡’ (Ξ»x. Normal c * f x)⁺ = (Ξ»x. -Normal c * f⁻ x))
   
   [FN_PLUS_CMUL_full]  Theorem
      
      ⊒ βˆ€f c.
          (0 ≀ c β‡’ (Ξ»x. c * f x)⁺ = (Ξ»x. c * f⁺ x)) ∧
          (c ≀ 0 β‡’ (Ξ»x. c * f x)⁺ = (Ξ»x. -c * f⁻ x))
   
   [FN_PLUS_FMUL]  Theorem
      
      ⊒ βˆ€f c. (βˆ€x. 0 ≀ c x) β‡’ (Ξ»x. c x * f x)⁺ = (Ξ»x. c x * f⁺ x)
   
   [FN_PLUS_INFTY_IMP]  Theorem
      
      ⊒ βˆ€f x. f⁺ x = +∞ β‡’ f⁻ x = 0
   
   [FN_PLUS_LE_ABS]  Theorem
      
      ⊒ βˆ€f x. f⁺ x ≀ abs (f x)
   
   [FN_PLUS_NEG_ZERO]  Theorem
      
      ⊒ βˆ€g. (βˆ€x. g x ≀ 0) β‡’ g⁺ = (Ξ»x. 0)
   
   [FN_PLUS_NOT_INFTY]  Theorem
      
      ⊒ βˆ€f. (βˆ€x. f x β‰  +∞) β‡’ βˆ€x. f⁺ x β‰  +∞
   
   [FN_PLUS_NOT_INFTY']  Theorem
      
      ⊒ βˆ€f x. f x β‰  +∞ β‡’ f⁺ x β‰  +∞
   
   [FN_PLUS_POS]  Theorem
      
      ⊒ βˆ€g x. 0 ≀ g⁺ x
   
   [FN_PLUS_POS_ID]  Theorem
      
      ⊒ βˆ€g. (βˆ€x. 0 ≀ g x) β‡’ g⁺ = g
   
   [FN_PLUS_REDUCE]  Theorem
      
      ⊒ βˆ€f x. 0 ≀ f x β‡’ f⁺ x = f x
   
   [FN_PLUS_TO_MINUS]  Theorem
      
      ⊒ βˆ€f. (Ξ»x. -f x)⁺ = f⁻
   
   [FN_PLUS_ZERO]  Theorem
      
      ⊒ (λx. 0)⁺ = (λx. 0)
   
   [FORALL_IMP_AE]  Theorem
      
      ⊒ βˆ€m P. measure_space m ∧ (βˆ€x. x ∈ m_space m β‡’ P x) β‡’ AE x::m. P x
   
   [INDICATOR_FN_ABS]  Theorem
      
      ⊒ βˆ€s. abs ∘ πŸ™ s = πŸ™ s
   
   [INDICATOR_FN_ABS_MUL]  Theorem
      
      ⊒ βˆ€f s. abs ∘ (Ξ»x. f x * πŸ™ s x) = (Ξ»x. (abs ∘ f) x * πŸ™ s x)
   
   [INDICATOR_FN_CROSS]  Theorem
      
      ⊒ βˆ€s t x y. πŸ™ (s Γ— t) (x,y) = πŸ™ s x * πŸ™ t y
   
   [INDICATOR_FN_DIFF]  Theorem
      
      ⊒ βˆ€A B. πŸ™ (A DIFF B) = (Ξ»t. πŸ™ A t βˆ’ πŸ™ (A ∩ B) t)
   
   [INDICATOR_FN_DIFF_SPACE]  Theorem
      
      ⊒ βˆ€A B sp.
          A βŠ† sp ∧ B βŠ† sp β‡’ πŸ™ (A ∩ (sp DIFF B)) = (Ξ»t. πŸ™ A t βˆ’ πŸ™ (A ∩ B) t)
   
   [INDICATOR_FN_EMPTY]  Theorem
      
      ⊒ βˆ€x. πŸ™ βˆ… x = 0
   
   [INDICATOR_FN_FCP_CROSS]  Theorem
      
      ⊒ βˆ€s t x y.
          FINITE π•Œ(:Ξ²) ∧ FINITE π•Œ(:Ξ³) β‡’
          πŸ™ (fcp_cross s t) (FCP_CONCAT x y) = πŸ™ s x * πŸ™ t y
   
   [INDICATOR_FN_INTER]  Theorem
      
      ⊒ βˆ€A B. πŸ™ (A ∩ B) = (Ξ»t. πŸ™ A t * πŸ™ B t)
   
   [INDICATOR_FN_INTER_MIN]  Theorem
      
      ⊒ βˆ€A B. πŸ™ (A ∩ B) = (Ξ»t. min (πŸ™ A t) (πŸ™ B t))
   
   [INDICATOR_FN_LE_1]  Theorem
      
      ⊒ βˆ€s x. πŸ™ s x ≀ 1
   
   [INDICATOR_FN_MONO]  Theorem
      
      ⊒ βˆ€s t x. s βŠ† t β‡’ πŸ™ s x ≀ πŸ™ t x
   
   [INDICATOR_FN_MUL_INTER]  Theorem
      
      ⊒ βˆ€A B. (Ξ»t. πŸ™ A t * πŸ™ B t) = (Ξ»t. πŸ™ (A ∩ B) t)
   
   [INDICATOR_FN_NOT_INFTY]  Theorem
      
      ⊒ βˆ€s x. πŸ™ s x β‰  βˆ’βˆž ∧ πŸ™ s x β‰  +∞
   
   [INDICATOR_FN_POS]  Theorem
      
      ⊒ βˆ€s x. 0 ≀ πŸ™ s x
   
   [INDICATOR_FN_SING_0]  Theorem
      
      ⊒ βˆ€x y. x β‰  y β‡’ πŸ™ {x} y = 0
   
   [INDICATOR_FN_SING_1]  Theorem
      
      ⊒ βˆ€x y. x = y β‡’ πŸ™ {x} y = 1
   
   [INDICATOR_FN_UNION]  Theorem
      
      ⊒ βˆ€A B. πŸ™ (A βˆͺ B) = (Ξ»t. πŸ™ A t + πŸ™ B t βˆ’ πŸ™ (A ∩ B) t)
   
   [INDICATOR_FN_UNION_MAX]  Theorem
      
      ⊒ βˆ€A B. πŸ™ (A βˆͺ B) = (Ξ»t. max (πŸ™ A t) (πŸ™ B t))
   
   [INDICATOR_FN_UNION_MIN]  Theorem
      
      ⊒ βˆ€A B. πŸ™ (A βˆͺ B) = (Ξ»t. min (πŸ™ A t + πŸ™ B t) 1)
   
   [IN_LIMINF]  Theorem
      
      ⊒ βˆ€A x. x ∈ liminf A ⇔ βˆƒm. βˆ€n. m ≀ n β‡’ x ∈ A n
   
   [IN_LIMSUP]  Theorem
      
      ⊒ βˆ€A x. x ∈ limsup A ⇔ βˆƒN. INFINITE N ∧ βˆ€n. n ∈ N β‡’ x ∈ A n
   
   [IN_MEASURABLE_BOREL]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a ⇔
          sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
          βˆ€c. {x | f x < Normal c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_2D_FUNCTION]  Theorem
      
      ⊒ βˆ€a X Y f.
          sigma_algebra a ∧ X ∈ Borel_measurable a ∧
          Y ∈ Borel_measurable a ∧ f ∈ Borel_measurable (Borel Γ— Borel) β‡’
          (λx. f (X x,Y x)) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_2D_VECTOR]  Theorem
      
      ⊒ βˆ€a X Y.
          sigma_algebra a ∧ X ∈ Borel_measurable a ∧ Y ∈ Borel_measurable a β‡’
          (Ξ»x. (X x,Y x)) ∈ measurable a (Borel Γ— Borel)
   
   [IN_MEASURABLE_BOREL_ABS]  Theorem
      
      ⊒ βˆ€a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (βˆ€x. x ∈ space a β‡’ g x = abs (f x)) β‡’
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ABS']  Theorem
      
      ⊒ βˆ€a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a β‡’
          abs ∘ f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ADD]  Theorem
      
      ⊒ βˆ€a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧
          (βˆ€x. x ∈ space a β‡’ f x β‰  βˆ’βˆž ∧ g x β‰  βˆ’βˆž ∨ f x β‰  +∞ ∧ g x β‰  +∞) ∧
          (βˆ€x. x ∈ space a β‡’ h x = f x + g x) β‡’
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_ADD']  Theorem
      
      ⊒ βˆ€a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (βˆ€x. x ∈ space a β‡’ h x = f x + g x) β‡’
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_AE_EQ]  Theorem
      
      ⊒ βˆ€m f g.
          complete_measure_space m ∧ (AE x::m. f x = g x) ∧
          f ∈ Borel_measurable (m_space m,measurable_sets m) β‡’
          g ∈ Borel_measurable (m_space m,measurable_sets m)
   
   [IN_MEASURABLE_BOREL_ALL]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          (βˆ€c. {x | f x < c} ∩ space a ∈ subsets a) ∧
          (βˆ€c. {x | c ≀ f x} ∩ space a ∈ subsets a) ∧
          (βˆ€c. {x | f x ≀ c} ∩ space a ∈ subsets a) ∧
          (βˆ€c. {x | c < f x} ∩ space a ∈ subsets a) ∧
          (βˆ€c d. {x | c ≀ f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
          (βˆ€c d. {x | c < f x ∧ f x ≀ d} ∩ space a ∈ subsets a) ∧
          (βˆ€c d. {x | c ≀ f x ∧ f x ≀ d} ∩ space a ∈ subsets a) ∧
          (βˆ€c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a) ∧
          (βˆ€c. {x | f x = c} ∩ space a ∈ subsets a) ∧
          βˆ€c. {x | f x β‰  c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALL_MEASURE]  Theorem
      
      ⊒ βˆ€f m.
          f ∈ Borel_measurable (m_space m,measurable_sets m) β‡’
          (βˆ€c. {x | f x < c} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c. {x | c ≀ f x} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c. {x | f x ≀ c} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c. {x | c < f x} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c d. {x | c ≀ f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c d. {x | c < f x ∧ f x ≀ d} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c d. {x | c ≀ f x ∧ f x ≀ d} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c d. {x | c < f x ∧ f x < d} ∩ m_space m ∈ measurable_sets m) ∧
          (βˆ€c. {x | f x = c} ∩ m_space m ∈ measurable_sets m) ∧
          βˆ€c. {x | f x β‰  c} ∩ m_space m ∈ measurable_sets m
   
   [IN_MEASURABLE_BOREL_ALT1]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a ⇔
          sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
          βˆ€c. {x | Normal c ≀ f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT1_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | c ≀ f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT2]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a ⇔
          sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
          βˆ€c. {x | f x ≀ Normal c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT2_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x ≀ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT3]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a ⇔
          sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
          βˆ€c. {x | Normal c < f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT3_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | c < f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT4]  Theorem
      
      ⊒ βˆ€f a.
          (βˆ€x. f x β‰  βˆ’βˆž) β‡’
          (f ∈ Borel_measurable a ⇔
           sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
           βˆ€c d.
             {x | Normal c ≀ f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT4_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c ≀ f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT5]  Theorem
      
      ⊒ βˆ€f a.
          (βˆ€x. f x β‰  βˆ’βˆž) β‡’
          (f ∈ Borel_measurable a ⇔
           sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
           βˆ€c d.
             {x | Normal c < f x ∧ f x ≀ Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT5_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c < f x ∧ f x ≀ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT6]  Theorem
      
      ⊒ βˆ€f a.
          (βˆ€x. f x β‰  βˆ’βˆž) β‡’
          (f ∈ Borel_measurable a ⇔
           sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
           βˆ€c d.
             {x | Normal c ≀ f x ∧ f x ≀ Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT6_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c ≀ f x ∧ f x ≀ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT7]  Theorem
      
      ⊒ βˆ€f a.
          (βˆ€x. f x β‰  βˆ’βˆž) β‡’
          (f ∈ Borel_measurable a ⇔
           sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
           βˆ€c d.
             {x | Normal c < f x ∧ f x < Normal d} ∩ space a ∈ subsets a)
   
   [IN_MEASURABLE_BOREL_ALT7_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT8]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x = c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_ALT9]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x β‰  c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_BOREL_ABS]  Theorem
      
      ⊒ abs ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_BOREL_I]  Theorem
      
      ⊒ (λx. x) ∈ Borel_measurable Borel
   
   [IN_MEASURABLE_BOREL_CC]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c ≀ f x ∧ f x ≀ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_CMUL]  Theorem
      
      ⊒ βˆ€a f g z.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (βˆ€x. x ∈ space a β‡’ g x = Normal z * f x) β‡’
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CMUL_INDICATOR]  Theorem
      
      ⊒ βˆ€a z s.
          sigma_algebra a ∧ s ∈ subsets a β‡’
          (Ξ»x. Normal z * πŸ™ s x) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CMUL_INDICATOR']  Theorem
      
      ⊒ βˆ€a c s.
          sigma_algebra a ∧ s ∈ subsets a β‡’
          (Ξ»x. c * πŸ™ s x) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CO]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c ≀ f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_CONST]  Theorem
      
      ⊒ βˆ€a k f.
          sigma_algebra a ∧ (βˆ€x. x ∈ space a β‡’ f x = k) β‡’
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CONST']  Theorem
      
      ⊒ βˆ€a k. sigma_algebra a β‡’ (Ξ»x. k) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_CR]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | c ≀ f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_EQ]  Theorem
      
      ⊒ βˆ€m f g.
          (βˆ€x. x ∈ m_space m β‡’ f x = g x) ∧
          g ∈ Borel_measurable (m_space m,measurable_sets m) β‡’
          f ∈ Borel_measurable (m_space m,measurable_sets m)
   
   [IN_MEASURABLE_BOREL_EQ']  Theorem
      
      ⊒ βˆ€a f g.
          (βˆ€x. x ∈ space a β‡’ f x = g x) ∧ g ∈ Borel_measurable a β‡’
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_FN_MINUS]  Theorem
      
      ⊒ βˆ€a f. f ∈ Borel_measurable a β‡’ f⁻ ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_FN_PLUS]  Theorem
      
      ⊒ βˆ€a f. f ∈ Borel_measurable a β‡’ f⁺ ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_IMP]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x < c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_IMP_BOREL]  Theorem
      
      ⊒ βˆ€f m.
          f ∈ borel_measurable (m_space m,measurable_sets m) β‡’
          Normal ∘ f ∈ Borel_measurable (m_space m,measurable_sets m)
   
   [IN_MEASURABLE_BOREL_IMP_BOREL']  Theorem
      
      ⊒ βˆ€a f.
          sigma_algebra a ∧ f ∈ borel_measurable a β‡’
          Normal ∘ f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_INDICATOR]  Theorem
      
      ⊒ βˆ€a A f.
          sigma_algebra a ∧ A ∈ subsets a ∧ (βˆ€x. x ∈ space a β‡’ f x = πŸ™ A x) β‡’
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_LE]  Theorem
      
      ⊒ βˆ€a f g.
          f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a β‡’
          {x | f x ≀ g x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_LT]  Theorem
      
      ⊒ βˆ€f g a.
          f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a β‡’
          {x | f x < g x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_MAX]  Theorem
      
      ⊒ βˆ€a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a β‡’
          (λx. max (f x) (g x)) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MAXIMAL]  Theorem
      
      ⊒ βˆ€N. FINITE N β‡’
            βˆ€g f a.
              sigma_algebra a ∧ (βˆ€n. g n ∈ Borel_measurable a) ∧
              (βˆ€x. f x = sup (IMAGE (Ξ»n. g n x) N)) β‡’
              f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MIN]  Theorem
      
      ⊒ βˆ€a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ g ∈ Borel_measurable a β‡’
          (λx. min (f x) (g x)) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MINIMAL]  Theorem
      
      ⊒ βˆ€N. FINITE N β‡’
            βˆ€g f a.
              sigma_algebra a ∧ (βˆ€n. g n ∈ Borel_measurable a) ∧
              (βˆ€x. f x = inf (IMAGE (Ξ»n. g n x) N)) β‡’
              f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MINUS]  Theorem
      
      ⊒ βˆ€a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (βˆ€x. x ∈ space a β‡’ g x = -f x) β‡’
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MONO_SUP]  Theorem
      
      ⊒ βˆ€fn f a.
          sigma_algebra a ∧ (βˆ€n. fn n ∈ Borel_measurable a) ∧
          (βˆ€n x. x ∈ space a β‡’ fn n x ≀ fn (SUC n) x) ∧
          (βˆ€x. x ∈ space a β‡’ f x = sup (IMAGE (Ξ»n. fn n x) π•Œ(:num))) β‡’
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MUL]  Theorem
      
      ⊒ βˆ€a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (βˆ€x. x ∈ space a β‡’ h x = f x * g x) ∧
          (βˆ€x. x ∈ space a β‡’ f x β‰  βˆ’βˆž ∧ f x β‰  +∞ ∧ g x β‰  βˆ’βˆž ∧ g x β‰  +∞) β‡’
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MUL_INDICATOR]  Theorem
      
      ⊒ βˆ€a f s.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧ s ∈ subsets a β‡’
          (Ξ»x. f x * πŸ™ s x) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ]  Theorem
      
      ⊒ βˆ€a f.
          sigma_algebra a β‡’
          (f ∈ Borel_measurable a ⇔
           (Ξ»x. f x * πŸ™ (space a) x) ∈ Borel_measurable a)
   
   [IN_MEASURABLE_BOREL_NEGINF]  Theorem
      
      ⊒ βˆ€f a. f ∈ Borel_measurable a β‡’ {x | f x = βˆ’βˆž} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_NOT_NEGINF]  Theorem
      
      ⊒ βˆ€f a. f ∈ Borel_measurable a β‡’ {x | f x β‰  βˆ’βˆž} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_NOT_POSINF]  Theorem
      
      ⊒ βˆ€f a. f ∈ Borel_measurable a β‡’ {x | f x β‰  +∞} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_NOT_SING]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x β‰  c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_OC]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c < f x ∧ f x ≀ d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_OO]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’
          βˆ€c d. {x | c < f x ∧ f x < d} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_OR]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | c < f x} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_PLUS_MINUS]  Theorem
      
      ⊒ βˆ€a f.
          f ∈ Borel_measurable a ⇔
          f⁺ ∈ Borel_measurable a ∧ f⁻ ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_POSINF]  Theorem
      
      ⊒ βˆ€f a. f ∈ Borel_measurable a β‡’ {x | f x = +∞} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_POW]  Theorem
      
      ⊒ βˆ€n a f.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (βˆ€x. x ∈ space a β‡’ f x β‰  βˆ’βˆž ∧ f x β‰  +∞) β‡’
          (λx. f x pow n) ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_RC]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x ≀ c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_RO]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x < c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_SING]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a β‡’ βˆ€c. {x | f x = c} ∩ space a ∈ subsets a
   
   [IN_MEASURABLE_BOREL_SQR]  Theorem
      
      ⊒ βˆ€a f g.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          (βˆ€x. x ∈ space a β‡’ g x = (f x)Β²) β‡’
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUB]  Theorem
      
      ⊒ βˆ€a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧
          (βˆ€x. x ∈ space a β‡’ f x β‰  βˆ’βˆž ∧ g x β‰  +∞ ∨ f x β‰  +∞ ∧ g x β‰  βˆ’βˆž) ∧
          (βˆ€x. x ∈ space a β‡’ h x = f x βˆ’ g x) β‡’
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUB']  Theorem
      
      ⊒ βˆ€a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (βˆ€x. x ∈ space a β‡’ h x = f x βˆ’ g x) β‡’
          h ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUM]  Theorem
      
      ⊒ βˆ€a f g s.
          FINITE s ∧ sigma_algebra a ∧
          (βˆ€i. i ∈ s β‡’ f i ∈ Borel_measurable a) ∧
          (βˆ€i x. i ∈ s ∧ x ∈ space a β‡’ f i x β‰  βˆ’βˆž) ∧
          (βˆ€x. x ∈ space a β‡’ g x = βˆ‘ (Ξ»i. f i x) s) β‡’
          g ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_SUMINF]  Theorem
      
      ⊒ βˆ€fn f a.
          sigma_algebra a ∧ (βˆ€n. fn n ∈ Borel_measurable a) ∧
          (βˆ€i x. x ∈ space a β‡’ 0 ≀ fn i x) ∧
          (βˆ€x. x ∈ space a β‡’ f x = suminf (Ξ»n. fn n x)) β‡’
          f ∈ Borel_measurable a
   
   [IN_MEASURABLE_BOREL_TIMES]  Theorem
      
      ⊒ βˆ€m f g h.
          measure_space m ∧
          f ∈ Borel_measurable (m_space m,measurable_sets m) ∧
          g ∈ Borel_measurable (m_space m,measurable_sets m) ∧
          (βˆ€x. x ∈ m_space m β‡’ h x = f x * g x) β‡’
          h ∈ Borel_measurable (m_space m,measurable_sets m)
   
   [IN_MEASURABLE_BOREL_TIMES']  Theorem
      
      ⊒ βˆ€a f g h.
          sigma_algebra a ∧ f ∈ Borel_measurable a ∧
          g ∈ Borel_measurable a ∧ (βˆ€x. x ∈ space a β‡’ h x = f x * g x) β‡’
          h ∈ Borel_measurable a
   
   [MEASURABLE_BOREL]  Theorem
      
      ⊒ βˆ€f a.
          f ∈ Borel_measurable a ⇔
          sigma_algebra a ∧ f ∈ (space a β†’ π•Œ(:extreal)) ∧
          βˆ€c. PREIMAGE f {x | x < Normal c} ∩ space a ∈ subsets a
   
   [MEASURE_SPACE_LBOREL]  Theorem
      
      ⊒ measure_space ext_lborel
   
   [SIGMA_ALGEBRA_BOREL]  Theorem
      
      ⊒ sigma_algebra Borel
   
   [SIGMA_ALGEBRA_BOREL_2D]  Theorem
      
      ⊒ sigma_algebra (Borel Γ— Borel)
   
   [SIGMA_FINITE_LBOREL]  Theorem
      
      ⊒ sigma_finite ext_lborel
   
   [SPACE_BOREL]  Theorem
      
      ⊒ space Borel = π•Œ(:extreal)
   
   [SPACE_BOREL_2D]  Theorem
      
      ⊒ space (Borel Γ— Borel) = π•Œ(:extreal # extreal)
   
   [absolutely_integrable_on_indicator]  Theorem
      
      ⊒ βˆ€A X.
          indicator A absolutely_integrable_on X ⇔
          indicator A integrable_on X
   
   [borel_eq_real_set]  Theorem
      
      ⊒ borel = (π•Œ(:real),IMAGE real_set (subsets Borel))
   
   [borel_imp_lebesgue_measurable]  Theorem
      
      ⊒ βˆ€f. f ∈ borel_measurable (space borel,subsets borel) β‡’
            f ∈
            borel_measurable (m_space lebesgue,measurable_sets lebesgue)
   
   [borel_imp_lebesgue_sets]  Theorem
      
      ⊒ βˆ€s. s ∈ subsets borel β‡’ s ∈ measurable_sets lebesgue
   
   [countably_additive_lebesgue]  Theorem
      
      ⊒ countably_additive lebesgue
   
   [fn_minus]  Theorem
      
      ⊒ βˆ€f x. f⁻ x = -min 0 (f x)
   
   [fn_minus_mul_indicator]  Theorem
      
      ⊒ βˆ€f s. (Ξ»x. f x * πŸ™ s x)⁻ = (Ξ»x. f⁻ x * πŸ™ s x)
   
   [fn_plus]  Theorem
      
      ⊒ βˆ€f x. f⁺ x = max 0 (f x)
   
   [fn_plus_mul_indicator]  Theorem
      
      ⊒ βˆ€f s. (Ξ»x. f x * πŸ™ s x)⁺ = (Ξ»x. f⁺ x * πŸ™ s x)
   
   [has_integral_indicator_UNIV]  Theorem
      
      ⊒ βˆ€s A x.
          (indicator (s ∩ A) has_integral x) π•Œ(:real) ⇔
          (indicator s has_integral x) A
   
   [has_integral_interval_cube]  Theorem
      
      ⊒ βˆ€a b n.
          (indicator (interval [(a,b)]) has_integral
           content (interval [(a,b)] ∩ line n)) (line n)
   
   [in_borel_measurable_continuous_on]  Theorem
      
      ⊒ βˆ€f. f continuous_on π•Œ(:real) β‡’ f ∈ borel_measurable borel
   
   [in_borel_measurable_from_Borel]  Theorem
      
      ⊒ βˆ€a f. f ∈ Borel_measurable a β‡’ real ∘ f ∈ borel_measurable a
   
   [in_borel_measurable_imp]  Theorem
      
      ⊒ βˆ€m f.
          measure_space m ∧
          (βˆ€s. open s β‡’ PREIMAGE f s ∩ m_space m ∈ measurable_sets m) β‡’
          f ∈ borel_measurable (m_space m,measurable_sets m)
   
   [in_measurable_sigma_pow]  Theorem
      
      ⊒ βˆ€m sp N f.
          measure_space m ∧ N βŠ† POW sp ∧ f ∈ (m_space m β†’ sp) ∧
          (βˆ€y. y ∈ N β‡’ PREIMAGE f y ∩ m_space m ∈ measurable_sets m) β‡’
          f ∈ measurable (m_space m,measurable_sets m) (sigma sp N)
   
   [in_sets_lebesgue]  Theorem
      
      ⊒ βˆ€A. (βˆ€n. indicator A integrable_on line n) β‡’
            A ∈ measurable_sets lebesgue
   
   [in_sets_lebesgue_imp]  Theorem
      
      ⊒ βˆ€A n.
          A ∈ measurable_sets lebesgue β‡’ indicator A integrable_on line n
   
   [indicator_fn_general_cross]  Theorem
      
      ⊒ βˆ€cons car cdr s t x y.
          pair_operation cons car cdr β‡’
          πŸ™ (general_cross cons s t) (cons x y) = πŸ™ s x * πŸ™ t y
   
   [indicator_fn_normal]  Theorem
      
      ⊒ βˆ€s x. βˆƒr. πŸ™ s x = Normal r ∧ 0 ≀ r ∧ r ≀ 1
   
   [indicator_fn_split]  Theorem
      
      ⊒ βˆ€r s b.
          FINITE r ∧ BIGUNION (IMAGE b r) = s ∧
          (βˆ€i j. i ∈ r ∧ j ∈ r ∧ i β‰  j β‡’ DISJOINT (b i) (b j)) β‡’
          βˆ€a. a βŠ† s β‡’ πŸ™ a = (Ξ»x. βˆ‘ (Ξ»i. πŸ™ (a ∩ b i) x) r)
   
   [indicator_fn_suminf]  Theorem
      
      ⊒ βˆ€a x.
          (βˆ€m n. m β‰  n β‡’ DISJOINT (a m) (a n)) β‡’
          suminf (Ξ»i. πŸ™ (a i) x) = πŸ™ (BIGUNION (IMAGE a π•Œ(:num))) x
   
   [integrable_indicator_UNIV]  Theorem
      
      ⊒ βˆ€s A.
          indicator (s ∩ A) integrable_on π•Œ(:real) ⇔
          indicator s integrable_on A
   
   [integral_indicator_UNIV]  Theorem
      
      ⊒ βˆ€s A.
          integral π•Œ(:real) (indicator (s ∩ A)) = integral A (indicator s)
   
   [integral_one]  Theorem
      
      ⊒ βˆ€A. integral A (Ξ»x. 1) = integral π•Œ(:real) (indicator A)
   
   [lambda0_empty]  Theorem
      
      ⊒ lambda0 βˆ… = 0
   
   [lambda0_not_infty]  Theorem
      
      ⊒ βˆ€a b.
          lambda0 (right_open_interval a b) β‰  +∞ ∧
          lambda0 (right_open_interval a b) β‰  βˆ’βˆž
   
   [lambda_closed_interval]  Theorem
      
      ⊒ βˆ€a b. a ≀ b β‡’ lambda (interval [(a,b)]) = Normal (b βˆ’ a)
   
   [lambda_closed_interval_content]  Theorem
      
      ⊒ βˆ€a b.
          lambda (interval [(a,b)]) = Normal (content (interval [(a,b)]))
   
   [lambda_empty]  Theorem
      
      ⊒ lambda βˆ… = 0
   
   [lambda_eq]  Theorem
      
      ⊒ βˆ€m. (βˆ€a b.
               measure m (interval [(a,b)]) =
               Normal (content (interval [(a,b)]))) ∧ measure_space m ∧
            m_space m = space borel ∧ measurable_sets m = subsets borel β‡’
            βˆ€s. s ∈ subsets borel β‡’ lambda s = measure m s
   
   [lambda_eq_lebesgue]  Theorem
      
      ⊒ βˆ€s. s ∈ subsets borel β‡’ lambda s = measure lebesgue s
   
   [lambda_not_infty]  Theorem
      
      ⊒ βˆ€a b.
          lambda (right_open_interval a b) β‰  +∞ ∧
          lambda (right_open_interval a b) β‰  βˆ’βˆž
   
   [lambda_open_interval]  Theorem
      
      ⊒ βˆ€a b. a ≀ b β‡’ lambda (interval (a,b)) = Normal (b βˆ’ a)
   
   [lambda_prop]  Theorem
      
      ⊒ βˆ€a b. a ≀ b β‡’ lambda (right_open_interval a b) = Normal (b βˆ’ a)
   
   [lambda_sing]  Theorem
      
      ⊒ βˆ€c. lambda {c} = 0
   
   [lborel0_additive]  Theorem
      
      ⊒ additive lborel0
   
   [lborel0_finite_additive]  Theorem
      
      ⊒ finite_additive lborel0
   
   [lborel0_positive]  Theorem
      
      ⊒ positive lborel0
   
   [lborel0_premeasure]  Theorem
      
      ⊒ premeasure lborel0
   
   [lborel0_subadditive]  Theorem
      
      ⊒ subadditive lborel0
   
   [lborel_subset_lebesgue]  Theorem
      
      ⊒ measurable_sets lborel βŠ† measurable_sets lebesgue
   
   [lebesgue_closed_interval]  Theorem
      
      ⊒ βˆ€a b. a ≀ b β‡’ measure lebesgue (interval [(a,b)]) = Normal (b βˆ’ a)
   
   [lebesgue_closed_interval_content]  Theorem
      
      ⊒ βˆ€a b.
          measure lebesgue (interval [(a,b)]) =
          Normal (content (interval [(a,b)]))
   
   [lebesgue_empty]  Theorem
      
      ⊒ measure lebesgue βˆ… = 0
   
   [lebesgue_eq_lambda]  Theorem
      
      ⊒ βˆ€s. s ∈ subsets borel β‡’ measure lebesgue s = lambda s
   
   [lebesgue_measure_iff_LIMSEQ]  Theorem
      
      ⊒ βˆ€A m.
          A ∈ measurable_sets lebesgue ∧ 0 ≀ m β‡’
          (measure lebesgue A = Normal m ⇔
           ((Ξ»n. integral (line n) (indicator A)) --> m) sequentially)
   
   [lebesgue_of_negligible]  Theorem
      
      ⊒ βˆ€s. negligible s β‡’ measure lebesgue s = 0
   
   [lebesgue_open_interval]  Theorem
      
      ⊒ βˆ€a b. a ≀ b β‡’ measure lebesgue (interval (a,b)) = Normal (b βˆ’ a)
   
   [lebesgue_sing]  Theorem
      
      ⊒ βˆ€c. measure lebesgue {c} = 0
   
   [liminf_limsup]  Theorem
      
      ⊒ βˆ€E. COMPL (liminf E) = limsup (COMPL ∘ E)
   
   [liminf_limsup_sp]  Theorem
      
      ⊒ βˆ€sp E. (βˆ€n. E n βŠ† sp) β‡’ sp DIFF liminf E = limsup (Ξ»n. sp DIFF E n)
   
   [limseq_indicator_BIGUNION]  Theorem
      
      ⊒ βˆ€A x.
          ((Ξ»k. indicator (BIGUNION {A i | i < k}) x) -->
           indicator (BIGUNION {A i | i ∈ π•Œ(:num)}) x) sequentially
   
   [limsup_suminf_indicator]  Theorem
      
      ⊒ βˆ€A. limsup A = {x | suminf (Ξ»n. πŸ™ (A n) x) = +∞}
   
   [limsup_suminf_indicator_space]  Theorem
      
      ⊒ βˆ€a A.
          sigma_algebra a ∧ (βˆ€n. A n ∈ subsets a) β‡’
          limsup A = {x | x ∈ space a ∧ suminf (Ξ»n. πŸ™ (A n) x) = +∞}
   
   [m_space_lborel]  Theorem
      
      ⊒ m_space lborel = space borel
   
   [measure_lebesgue]  Theorem
      
      ⊒ measure lebesgue =
        (Ξ»A. sup {Normal (integral (line n) (indicator A)) | n ∈ π•Œ(:num)})
   
   [measure_liminf]  Theorem
      
      ⊒ βˆ€p A.
          measure_space p ∧ (βˆ€n. A n ∈ measurable_sets p) β‡’
          measure p (liminf A) =
          sup (IMAGE (Ξ»m. measure p (BIGINTER {A n | m ≀ n})) π•Œ(:num))
   
   [measure_limsup]  Theorem
      
      ⊒ βˆ€p A.
          measure_space p ∧ measure p (BIGUNION (IMAGE A π•Œ(:num))) < +∞ ∧
          (βˆ€n. A n ∈ measurable_sets p) β‡’
          measure p (limsup A) =
          inf (IMAGE (Ξ»m. measure p (BIGUNION {A n | m ≀ n})) π•Œ(:num))
   
   [measure_limsup_finite]  Theorem
      
      ⊒ βˆ€p A.
          measure_space p ∧ measure p (m_space p) < +∞ ∧
          (βˆ€n. A n ∈ measurable_sets p) β‡’
          measure p (limsup A) =
          inf (IMAGE (Ξ»m. measure p (BIGUNION {A n | m ≀ n})) π•Œ(:num))
   
   [measure_space_lborel]  Theorem
      
      ⊒ measure_space lborel
   
   [measure_space_lebesgue]  Theorem
      
      ⊒ measure_space lebesgue
   
   [negligible_in_lebesgue]  Theorem
      
      ⊒ βˆ€s. negligible s β‡’ s ∈ measurable_sets lebesgue
   
   [nonneg_abs]  Theorem
      
      ⊒ βˆ€f. nonneg (abs ∘ f)
   
   [nonneg_fn_abs]  Theorem
      
      ⊒ βˆ€f. nonneg f β‡’ abs ∘ f = f
   
   [nonneg_fn_minus]  Theorem
      
      ⊒ βˆ€f. nonneg f β‡’ f⁻ = (Ξ»x. 0)
   
   [nonneg_fn_plus]  Theorem
      
      ⊒ βˆ€f. nonneg f β‡’ f⁺ = f
   
   [positive_lebesgue]  Theorem
      
      ⊒ positive lebesgue
   
   [seq_le_imp_lim_le]  Theorem
      
      ⊒ βˆ€x y f. (βˆ€n. f n ≀ x) ∧ (f --> y) sequentially β‡’ y ≀ x
   
   [seq_mono_le]  Theorem
      
      ⊒ βˆ€f x n. (βˆ€n. f n ≀ f (n + 1)) ∧ (f --> x) sequentially β‡’ f n ≀ x
   
   [set_limsup_alt]  Theorem
      
      ⊒ βˆ€E. limsup E =
            BIGINTER (IMAGE (Ξ»n. BIGUNION (IMAGE E (from n))) π•Œ(:num))
   
   [sets_lborel]  Theorem
      
      ⊒ measurable_sets lborel = subsets borel
   
   [sets_lebesgue]  Theorem
      
      ⊒ measurable_sets lebesgue =
        {A | βˆ€n. indicator A integrable_on line n}
   
   [sigma_algebra_lebesgue]  Theorem
      
      ⊒ sigma_algebra (π•Œ(:real),{A | βˆ€n. indicator A integrable_on line n})
   
   [sigma_finite_lborel]  Theorem
      
      ⊒ sigma_finite lborel
   
   [space_lborel]  Theorem
      
      ⊒ m_space lborel = π•Œ(:real)
   
   [space_lebesgue]  Theorem
      
      ⊒ m_space lebesgue = π•Œ(:real)
   
   [sup_sequence]  Theorem
      
      ⊒ βˆ€f l.
          mono_increasing f β‡’
          ((f --> l) sequentially ⇔
           sup (IMAGE (Ξ»n. Normal (f n)) π•Œ(:num)) = Normal l)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14