Theory "lbtree"

Parents     llist

Signature

Type Arity
lbtree 1
Constant Type
Lf :α lbtree
Lfrep :α -> β option
Nd :α -> α lbtree -> α lbtree -> α lbtree
Ndrep :α -> (bool list -> α option) -> (bool list -> α option) -> bool list -> α option
bf_flatten :α lbtree list -> α llist
depth :α -> α lbtree -> num -> bool
finite :α lbtree -> bool
is_lbtree :(bool list -> α option) -> bool
is_mmindex :(α -> num option) -> α list -> num -> num -> bool
lbtree_abs :(bool list -> α option) -> α lbtree
lbtree_case :α -> (β -> β lbtree -> β lbtree -> α) -> β lbtree -> α
lbtree_rep :α lbtree -> bool list -> α option
map :(α -> β) -> α lbtree -> β lbtree
mem :α -> α lbtree -> bool
mindepth :α -> α lbtree -> num option
optmin :num option -> num option -> num option
path_follow :(β -> (α # β # β) option) -> β -> bool list -> α option

Definitions

Lf_def
⊢ Lf = lbtree_abs Lfrep
Lfrep_def
⊢ Lfrep = (λl. NONE)
Nd_def
⊢ ∀a t1 t2. Nd a t1 t2 = lbtree_abs (Ndrep a (lbtree_rep t1) (lbtree_rep t2))
Ndrep_def
⊢ ∀a t1 t2.
    Ndrep a t1 t2 =
    (λl. case l of [] => SOME a | T::xs => t1 xs | F::xs => t2 xs)
bf_flatten_def
⊢ (bf_flatten [] = [||]) ∧ (∀ts. bf_flatten (Lf::ts) = bf_flatten ts) ∧
  ∀a t1 t2 ts. bf_flatten (Nd a t1 t2::ts) = a:::bf_flatten (ts ++ [t1; t2])
depth_def
⊢ lbtree$depth =
  (λa0 a1 a2.
       ∀depth'.
         (∀a0 a1 a2.
            (∃t1 t2. (a1 = Nd a0 t1 t2) ∧ (a2 = 0)) ∨
            (∃m a t1 t2. (a1 = Nd a t1 t2) ∧ (a2 = SUC m) ∧ depth' a0 t1 m) ∨
            (∃m a t1 t2. (a1 = Nd a t1 t2) ∧ (a2 = SUC m) ∧ depth' a0 t2 m) ⇒
            depth' a0 a1 a2) ⇒
         depth' a0 a1 a2)
finite_def
⊢ finite =
  (λa0.
       ∀finite'.
         (∀a0.
            (a0 = Lf) ∨
            (∃a t1 t2. (a0 = Nd a t1 t2) ∧ finite' t1 ∧ finite' t2) ⇒
            finite' a0) ⇒
         finite' a0)
is_lbtree_def
⊢ ∀t. is_lbtree t ⇔
      ∃P. (∀t. P t ⇒ (t = Lfrep) ∨ ∃a t1 t2. P t1 ∧ P t2 ∧ (t = Ndrep a t1 t2)) ∧
          P t
is_mmindex_def
⊢ ∀f l n d.
    lbtree$is_mmindex f l n d ⇔
    n < LENGTH l ∧ (f (EL n l) = SOME d) ∧
    ∀i. i < LENGTH l ⇒
        (f (EL i l) = NONE) ∨
        ∃d'. (f (EL i l) = SOME d') ∧ d ≤ d' ∧ (i < n ⇒ d < d')
lbtree_TY_DEF
⊢ ∃rep. TYPE_DEFINITION is_lbtree rep
lbtree_absrep
⊢ (∀a. lbtree_abs (lbtree_rep a) = a) ∧
  ∀r. is_lbtree r ⇔ (lbtree_rep (lbtree_abs r) = r)
lbtree_case_def
⊢ ∀e f t.
    lbtree_case e f t =
    if t = Lf then e
    else
      f (@a. ∃t1 t2. t = Nd a t1 t2) (@t1. ∃a t2. t = Nd a t1 t2)
        (@t2. ∃a t1. t = Nd a t1 t2)
map_def
⊢ ∀f. (map f Lf = Lf) ∧
      ∀a t1 t2. map f (Nd a t1 t2) = Nd (f a) (map f t1) (map f t2)
mem_def
⊢ mem =
  (λa0 a1.
       ∀mem'.
         (∀a0 a1.
            (∃t1 t2. a1 = Nd a0 t1 t2) ∨
            (∃b t1 t2. (a1 = Nd b t1 t2) ∧ mem' a0 t1) ∨
            (∃b t1 t2. (a1 = Nd b t1 t2) ∧ mem' a0 t2) ⇒
            mem' a0 a1) ⇒
         mem' a0 a1)
mindepth_def
⊢ ∀x t.
    lbtree$mindepth x t =
    if mem x t then SOME (LEAST n. lbtree$depth x t n) else NONE
path_follow_def
⊢ (∀g x. path_follow g x [] = OPTION_MAP FST (g x)) ∧
  ∀g x h t.
    path_follow g x (h::t) =
    case g x of
      NONE => NONE
    | SOME (a,y,z) => path_follow g (if h then y else z) t


Theorems

EXISTS_FIRST
⊢ ∀l. EXISTS P l ⇒ ∃l1 x l2. (l = l1 ++ x::l2) ∧ EVERY ($¬ ∘ P) l1 ∧ P x
Lf_NOT_Nd
⊢ Lf ≠ Nd a t1 t2
Nd_11
⊢ (Nd a1 t1 u1 = Nd a2 t2 u2) ⇔ (a1 = a2) ∧ (t1 = t2) ∧ (u1 = u2)
bf_flatten_append
⊢ ∀l1. EVERY ($= Lf) l1 ⇒ (bf_flatten (l1 ++ l2) = bf_flatten l2)
bf_flatten_eq_lnil
⊢ ∀l. (bf_flatten l = [||]) ⇔ EVERY ($= Lf) l
depth_cases
⊢ ∀a0 a1 a2.
    lbtree$depth a0 a1 a2 ⇔
    (∃t1 t2. (a1 = Nd a0 t1 t2) ∧ (a2 = 0)) ∨
    (∃m a t1 t2. (a1 = Nd a t1 t2) ∧ (a2 = SUC m) ∧ lbtree$depth a0 t1 m) ∨
    ∃m a t1 t2. (a1 = Nd a t1 t2) ∧ (a2 = SUC m) ∧ lbtree$depth a0 t2 m
depth_ind
⊢ ∀depth'.
    (∀x t1 t2. depth' x (Nd x t1 t2) 0) ∧
    (∀m x a t1 t2. depth' x t1 m ⇒ depth' x (Nd a t1 t2) (SUC m)) ∧
    (∀m x a t1 t2. depth' x t2 m ⇒ depth' x (Nd a t1 t2) (SUC m)) ⇒
    ∀a0 a1 a2. lbtree$depth a0 a1 a2 ⇒ depth' a0 a1 a2
depth_mem
⊢ ∀x t n. lbtree$depth x t n ⇒ mem x t
depth_rules
⊢ (∀x t1 t2. lbtree$depth x (Nd x t1 t2) 0) ∧
  (∀m x a t1 t2. lbtree$depth x t1 m ⇒ lbtree$depth x (Nd a t1 t2) (SUC m)) ∧
  ∀m x a t1 t2. lbtree$depth x t2 m ⇒ lbtree$depth x (Nd a t1 t2) (SUC m)
depth_strongind
⊢ ∀depth'.
    (∀x t1 t2. depth' x (Nd x t1 t2) 0) ∧
    (∀m x a t1 t2.
       lbtree$depth x t1 m ∧ depth' x t1 m ⇒ depth' x (Nd a t1 t2) (SUC m)) ∧
    (∀m x a t1 t2.
       lbtree$depth x t2 m ∧ depth' x t2 m ⇒ depth' x (Nd a t1 t2) (SUC m)) ⇒
    ∀a0 a1 a2. lbtree$depth a0 a1 a2 ⇒ depth' a0 a1 a2
exists_bf_flatten
⊢ exists ($= x) (bf_flatten tlist) ⇒ EXISTS (mem x) tlist
finite_cases
⊢ ∀a0.
    finite a0 ⇔
    (a0 = Lf) ∨ ∃a t1 t2. (a0 = Nd a t1 t2) ∧ finite t1 ∧ finite t2
finite_ind
⊢ ∀finite'.
    finite' Lf ∧ (∀a t1 t2. finite' t1 ∧ finite' t2 ⇒ finite' (Nd a t1 t2)) ⇒
    ∀a0. finite a0 ⇒ finite' a0
finite_map
⊢ finite (map f t) ⇔ finite t
finite_rules
⊢ finite Lf ∧ ∀a t1 t2. finite t1 ∧ finite t2 ⇒ finite (Nd a t1 t2)
finite_strongind
⊢ ∀finite'.
    finite' Lf ∧
    (∀a t1 t2.
       finite t1 ∧ finite' t1 ∧ finite t2 ∧ finite' t2 ⇒ finite' (Nd a t1 t2)) ⇒
    ∀a0. finite a0 ⇒ finite' a0
finite_thm
⊢ (finite Lf ⇔ T) ∧ (finite (Nd a t1 t2) ⇔ finite t1 ∧ finite t2)
lbtree_bisimulation
⊢ ∀t u.
    (t = u) ⇔
    ∃R. R t u ∧
        ∀t u.
          R t u ⇒
          (t = Lf) ∧ (u = Lf) ∨
          ∃a t1 u1 t2 u2.
            R t1 u1 ∧ R t2 u2 ∧ (t = Nd a t1 t2) ∧ (u = Nd a u1 u2)
lbtree_case_thm
⊢ (lbtree_case e f Lf = e) ∧ (lbtree_case e f (Nd a t1 t2) = f a t1 t2)
lbtree_cases
⊢ ∀t. (t = Lf) ∨ ∃a t1 t2. t = Nd a t1 t2
lbtree_strong_bisimulation
⊢ ∀t u.
    (t = u) ⇔
    ∃R. R t u ∧
        ∀t u.
          R t u ⇒
          (t = u) ∨
          ∃a t1 u1 t2 u2.
            R t1 u1 ∧ R t2 u2 ∧ (t = Nd a t1 t2) ∧ (u = Nd a u1 u2)
lbtree_ue_Axiom
⊢ ∀f. ∃!g. ∀x. g x = case f x of NONE => Lf | SOME (b,y,z) => Nd b (g y) (g z)
map_eq_Lf
⊢ ((map f t = Lf) ⇔ (t = Lf)) ∧ ((Lf = map f t) ⇔ (t = Lf))
map_eq_Nd
⊢ (map f t = Nd a t1 t2) ⇔
  ∃a' t1' t2'.
    (t = Nd a' t1' t2') ∧ (a = f a') ∧ (t1 = map f t1') ∧ (t2 = map f t2')
mem_bf_flatten
⊢ exists ($= x) (bf_flatten tlist) ⇔ EXISTS (mem x) tlist
mem_cases
⊢ ∀a0 a1.
    mem a0 a1 ⇔
    (∃t1 t2. a1 = Nd a0 t1 t2) ∨ (∃b t1 t2. (a1 = Nd b t1 t2) ∧ mem a0 t1) ∨
    ∃b t1 t2. (a1 = Nd b t1 t2) ∧ mem a0 t2
mem_depth
⊢ ∀x t. mem x t ⇒ ∃n. lbtree$depth x t n
mem_ind
⊢ ∀mem'.
    (∀a t1 t2. mem' a (Nd a t1 t2)) ∧
    (∀a b t1 t2. mem' a t1 ⇒ mem' a (Nd b t1 t2)) ∧
    (∀a b t1 t2. mem' a t2 ⇒ mem' a (Nd b t1 t2)) ⇒
    ∀a0 a1. mem a0 a1 ⇒ mem' a0 a1
mem_mindepth
⊢ ∀x t. mem x t ⇒ ∃n. lbtree$mindepth x t = SOME n
mem_rules
⊢ (∀a t1 t2. mem a (Nd a t1 t2)) ∧
  (∀a b t1 t2. mem a t1 ⇒ mem a (Nd b t1 t2)) ∧
  ∀a b t1 t2. mem a t2 ⇒ mem a (Nd b t1 t2)
mem_strongind
⊢ ∀mem'.
    (∀a t1 t2. mem' a (Nd a t1 t2)) ∧
    (∀a b t1 t2. mem a t1 ∧ mem' a t1 ⇒ mem' a (Nd b t1 t2)) ∧
    (∀a b t1 t2. mem a t2 ∧ mem' a t2 ⇒ mem' a (Nd b t1 t2)) ⇒
    ∀a0 a1. mem a0 a1 ⇒ mem' a0 a1
mem_thm
⊢ (mem a Lf ⇔ F) ∧ (mem a (Nd b t1 t2) ⇔ (a = b) ∨ mem a t1 ∨ mem a t2)
mindepth_depth
⊢ (lbtree$mindepth x t = SOME n) ⇒ lbtree$depth x t n
mindepth_thm
⊢ (lbtree$mindepth x Lf = NONE) ∧
  (lbtree$mindepth x (Nd a t1 t2) =
   if x = a then SOME 0
   else
     OPTION_MAP SUC
       (lbtree$optmin (lbtree$mindepth x t1) (lbtree$mindepth x t2)))
mmindex_EXISTS
⊢ EXISTS (λe. ∃n. f e = SOME n) l ⇒ ∃i m. lbtree$is_mmindex f l i m
mmindex_unique
⊢ lbtree$is_mmindex f l i m ⇒
  ∀j n. lbtree$is_mmindex f l j n ⇔ (j = i) ∧ (n = m)
optmin_def
⊢ (lbtree$optmin NONE NONE = NONE) ∧ (lbtree$optmin (SOME x) NONE = SOME x) ∧
  (lbtree$optmin NONE (SOME y) = SOME y) ∧
  (lbtree$optmin (SOME x) (SOME y) = SOME (MIN x y))
optmin_ind
⊢ ∀P. P NONE NONE ∧ (∀x. P (SOME x) NONE) ∧ (∀y. P NONE (SOME y)) ∧
      (∀x y. P (SOME x) (SOME y)) ⇒
      ∀v v1. P v v1