- DORDER_LEMMA
-
⊢ ∀g. dorder g ⇒
∀P Q.
(∃n. g n n ∧ ∀m. g m n ⇒ P m) ∧ (∃n. g n n ∧ ∀m. g m n ⇒ Q m) ⇒
∃n. g n n ∧ ∀m. g m n ⇒ P m ∧ Q m
- DORDER_NGE
-
⊢ dorder $>=
- DORDER_TENDSTO
-
⊢ ∀m x. dorder (tendsto (m,x))
- LIM_TENDS
-
⊢ ∀m1 m2 f x0 y0.
limpt (mtop m1) x0 𝕌(:α) ⇒
((f tends y0) (mtop m2,tendsto (m1,x0)) ⇔
∀e. 0 < e ⇒
∃d. 0 < d ∧
∀x. 0 < dist m1 (x,x0) ∧ dist m1 (x,x0) ≤ d ⇒
dist m2 (f x,y0) < e)
- LIM_TENDS2
-
⊢ ∀m1 m2 f x0 y0.
limpt (mtop m1) x0 𝕌(:α) ⇒
((f tends y0) (mtop m2,tendsto (m1,x0)) ⇔
∀e. 0 < e ⇒
∃d. 0 < d ∧
∀x. 0 < dist m1 (x,x0) ∧ dist m1 (x,x0) < d ⇒
dist m2 (f x,y0) < e)
- MR1_BOUNDED
-
⊢ ∀g f. bounded (mr1,g) f ⇔ ∃k N. g N N ∧ ∀n. g n N ⇒ abs (f n) < k
- MTOP_TENDS
-
⊢ ∀d g x x0.
(x tends x0) (mtop d,g) ⇔
∀e. 0 < e ⇒ ∃n. g n n ∧ ∀m. g m n ⇒ dist d (x m,x0) < e
- MTOP_TENDS_UNIQ
-
⊢ ∀g d.
dorder g ⇒ (x tends x0) (mtop d,g) ∧ (x tends x1) (mtop d,g) ⇒ (x0 = x1)
- NET_ABS
-
⊢ ∀g x x0.
(x tends x0) (mtop mr1,g) ⇒ ((λn. abs (x n)) tends abs x0) (mtop mr1,g)
- NET_ADD
-
⊢ ∀g. dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
((λn. x n + y n) tends (x0 + y0)) (mtop mr1,g)
- NET_CONV_BOUNDED
-
⊢ ∀g x x0. (x tends x0) (mtop mr1,g) ⇒ bounded (mr1,g) x
- NET_CONV_IBOUNDED
-
⊢ ∀g x x0. (x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒ bounded (mr1,g) (λn. (x n)⁻¹)
- NET_CONV_NZ
-
⊢ ∀g x x0.
(x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒ ∃N. g N N ∧ ∀n. g n N ⇒ x n ≠ 0
- NET_DIV
-
⊢ ∀g. dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ∧ y0 ≠ 0 ⇒
((λn. x n / y n) tends (x0 / y0)) (mtop mr1,g)
- NET_INV
-
⊢ ∀g. dorder g ⇒
∀x x0.
(x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒
((λn. (x n)⁻¹) tends x0⁻¹) (mtop mr1,g)
- NET_LE
-
⊢ ∀g. dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ∧
(∃N. g N N ∧ ∀n. g n N ⇒ x n ≤ y n) ⇒
x0 ≤ y0
- NET_MUL
-
⊢ ∀g. dorder g ⇒
∀x y x0 y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
((λn. x n * y n) tends (x0 * y0)) (mtop mr1,g)
- NET_NEG
-
⊢ ∀g. dorder g ⇒
∀x x0. (x tends x0) (mtop mr1,g) ⇔ ((λn. -x n) tends -x0) (mtop mr1,g)
- NET_NULL
-
⊢ ∀g x x0. (x tends x0) (mtop mr1,g) ⇔ ((λn. x n − x0) tends 0) (mtop mr1,g)
- NET_NULL_ADD
-
⊢ ∀g. dorder g ⇒
∀x y.
(x tends 0) (mtop mr1,g) ∧ (y tends 0) (mtop mr1,g) ⇒
((λn. x n + y n) tends 0) (mtop mr1,g)
- NET_NULL_CMUL
-
⊢ ∀g k x. (x tends 0) (mtop mr1,g) ⇒ ((λn. k * x n) tends 0) (mtop mr1,g)
- NET_NULL_MUL
-
⊢ ∀g. dorder g ⇒
∀x y.
bounded (mr1,g) x ∧ (y tends 0) (mtop mr1,g) ⇒
((λn. x n * y n) tends 0) (mtop mr1,g)
- NET_SUB
-
⊢ ∀g. dorder g ⇒
∀x x0 y y0.
(x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
((λn. x n − y n) tends (x0 − y0)) (mtop mr1,g)
- SEQ_TENDS
-
⊢ ∀d x x0.
(x tends x0) (mtop d,$>=) ⇔
∀e. 0 < e ⇒ ∃N. ∀n. n ≥ N ⇒ dist d (x n,x0) < e