Theory "num"

Parents     marker

Signature

Type Arity
num 0
Constant Type
0 :num
ABS_num :ind -> num
IS_NUM_REP :ind -> bool
REP_num :num -> ind
SUC :num -> num
SUC_REP :ind -> ind
ZERO_REP :ind

Definitions

IS_NUM_REP
⊢ ∀m. IS_NUM_REP m ⇔ ∀P. P ZERO_REP ∧ (∀n. P n ⇒ P (SUC_REP n)) ⇒ P m
SUC_DEF
⊢ ∀m. SUC m = ABS_num (SUC_REP (REP_num m))
SUC_REP_DEF
⊢ ONE_ONE SUC_REP ∧ ¬ONTO SUC_REP
ZERO_DEF
⊢ 0 = ABS_num ZERO_REP
ZERO_REP_DEF
⊢ ∀y. ZERO_REP ≠ SUC_REP y
num_ISO_DEF
⊢ (∀a. ABS_num (REP_num a) = a) ∧ ∀r. IS_NUM_REP r ⇔ (REP_num (ABS_num r) = r)
num_TY_DEF
⊢ ∃rep. TYPE_DEFINITION IS_NUM_REP rep


Theorems

INDUCTION
⊢ ∀P. P 0 ∧ (∀n. P n ⇒ P (SUC n)) ⇒ ∀n. P n
INV_SUC
⊢ ∀m n. (SUC m = SUC n) ⇒ (m = n)
NOT_SUC
⊢ ∀n. SUC n ≠ 0