Theory "pred_set"

Parents     numpair

Signature

Constant Type
BIGINTER :((α -> bool) -> bool) -> α -> bool
BIGUNION :((α -> bool) -> bool) -> α -> bool
BIJ :(α -> β) -> (α -> bool) -> (β -> bool) -> bool
CARD :(α -> bool) -> num
CHOICE :(α -> bool) -> α
COMPL :(α -> bool) -> α -> bool
CROSS :(α -> bool) -> (β -> bool) -> α # β -> bool
DELETE :(α -> bool) -> α -> α -> bool
DFUNSET :(α -> bool) -> (α -> β -> bool) -> (α -> β) -> bool
DIFF :(α -> bool) -> (α -> bool) -> α -> bool
DISJOINT :(α -> bool) -> (α -> bool) -> bool
EMPTY :α -> bool
FINITE :(α -> bool) -> bool
FUNSET :(α -> bool) -> (β -> bool) -> (α -> β) -> bool
GSPEC :(β -> α # bool) -> α -> bool
HAS_SIZE :(α -> bool) -> num -> bool
IMAGE :(α -> β) -> (α -> bool) -> β -> bool
INJ :(α -> β) -> (α -> bool) -> (β -> bool) -> bool
INSERT :α -> (α -> bool) -> α -> bool
INTER :(α -> bool) -> (α -> bool) -> α -> bool
ITSET :(α -> β -> β) -> (α -> bool) -> β -> β
LINV :(α -> β) -> (α -> bool) -> β -> α
LINV_OPT :(α -> β) -> (α -> bool) -> β -> α option
MAX_SET :(num -> bool) -> num
MIN_SET :(num -> bool) -> num
POW :(α -> bool) -> (α -> bool) -> bool
PREIMAGE :(α -> β) -> (β -> bool) -> α -> bool
PROD_IMAGE :(α -> num) -> (α -> bool) -> num
PROD_SET :(num -> bool) -> num
PSUBSET :(α -> bool) -> (α -> bool) -> bool
REL_RESTRICT :(α -> α -> bool) -> (α -> bool) -> α -> α -> bool
REST :(α -> bool) -> α -> bool
RINV :(α -> β) -> (α -> bool) -> β -> α
SING :(α -> bool) -> bool
SUBSET :(α -> bool) -> (α -> bool) -> bool
SUM_IMAGE :(α -> num) -> (α -> bool) -> num
SUM_SET :(num -> bool) -> num
SURJ :(α -> β) -> (α -> bool) -> (β -> bool) -> bool
UNION :(α -> bool) -> (α -> bool) -> α -> bool
UNIV :α -> bool
chooser :(α -> bool) -> num -> α
count :num -> num -> bool
countable :(α -> bool) -> bool
disjUNION :(α -> bool) -> (β -> bool) -> α + β -> bool
enumerate :(α -> bool) -> num -> α
equiv_on :(α -> α -> bool) -> (α -> bool) -> bool
is_measure_maximal :(α -> num) -> (α -> bool) -> α -> bool
num_to_pair :num -> num # num
pair_to_num :num # num -> num
pairwise :(α -> α -> bool) -> (α -> bool) -> bool
partition :(α -> α -> bool) -> (α -> bool) -> (α -> bool) -> bool
schroeder_close :(α -> α) -> (α -> bool) -> α -> bool

Definitions

BIGINTER
⊢ ∀P. BIGINTER P = {x | ∀s. s ∈ P ⇒ x ∈ s}
BIGUNION
⊢ ∀P. BIGUNION P = {x | ∃s. s ∈ P ∧ x ∈ s}
BIJ_DEF
⊢ ∀f s t. BIJ f s t ⇔ INJ f s t ∧ SURJ f s t
CARD_DEF
⊢ (CARD ∅ = 0) ∧
  ∀s. FINITE s ⇒
      ∀x. CARD (x INSERT s) = if x ∈ s then CARD s else SUC (CARD s)
CHOICE_DEF
⊢ ∀s. s ≠ ∅ ⇒ CHOICE s ∈ s
COMPL_DEF
⊢ ∀P. COMPL P = 𝕌(:α) DIFF P
CROSS_DEF
⊢ ∀P Q. P × Q = {p | FST p ∈ P ∧ SND p ∈ Q}
DELETE_DEF
⊢ ∀s x. s DELETE x = s DIFF {x}
DFUNSET
⊢ ∀P Q. P ⟶ Q = (λf. ∀x. x ∈ P ⇒ f x ∈ Q x)
DIFF_DEF
⊢ ∀s t. s DIFF t = {x | x ∈ s ∧ x ∉ t}
DISJOINT_DEF
⊢ ∀s t. DISJOINT s t ⇔ (s ∩ t = ∅)
EMPTY_DEF
⊢ ∅ = (λx. F)
FINITE_DEF
⊢ ∀s. FINITE s ⇔ ∀P. P ∅ ∧ (∀s. P s ⇒ ∀e. P (e INSERT s)) ⇒ P s
FUNSET
⊢ ∀P Q. P → Q = (λf. ∀x. x ∈ P ⇒ f x ∈ Q)
GSPECIFICATION
⊢ ∀f v. v ∈ GSPEC f ⇔ ∃x. (v,T) = f x
HAS_SIZE
⊢ ∀s n. s HAS_SIZE n ⇔ FINITE s ∧ (CARD s = n)
IMAGE_DEF
⊢ ∀f s. IMAGE f s = {f x | x ∈ s}
INJ_DEF
⊢ ∀f s t.
    INJ f s t ⇔
    (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x y. x ∈ s ∧ y ∈ s ⇒ (f x = f y) ⇒ (x = y)
INSERT_DEF
⊢ ∀x s. x INSERT s = {y | (y = x) ∨ y ∈ s}
INTER_DEF
⊢ ∀s t. s ∩ t = {x | x ∈ s ∧ x ∈ t}
LINV_LO
⊢ ∀f s y. LINV f s y = THE (LINV_OPT f s y)
LINV_OPT_def
⊢ ∀f s y.
    LINV_OPT f s y =
    if y ∈ IMAGE f s then SOME (@x. x ∈ s ∧ (f x = y)) else NONE
MAX_SET_DEF
⊢ ∀s. FINITE s ⇒
      (s ≠ ∅ ⇒ MAX_SET s ∈ s ∧ ∀y. y ∈ s ⇒ y ≤ MAX_SET s) ∧
      ((s = ∅) ⇒ (MAX_SET s = 0))
MIN_SET_DEF
⊢ MIN_SET = $LEAST
POW_DEF
⊢ ∀set. POW set = {s | s ⊆ set}
PREIMAGE_def
⊢ ∀f s. PREIMAGE f s = {x | f x ∈ s}
PROD_IMAGE_DEF
⊢ ∀f s. ∏ f s = ITSET (λe acc. f e * acc) s 1
PROD_SET_DEF
⊢ PROD_SET = ∏ I
PSUBSET_DEF
⊢ ∀s t. s ⊂ t ⇔ s ⊆ t ∧ s ≠ t
REL_RESTRICT_DEF
⊢ ∀R s x y. REL_RESTRICT R s x y ⇔ x ∈ s ∧ y ∈ s ∧ R x y
REST_DEF
⊢ ∀s. REST s = s DELETE CHOICE s
RINV_LO
⊢ ∀f s y. RINV f s y = THE (LINV_OPT f s y)
SING_DEF
⊢ ∀s. SING s ⇔ ∃x. s = {x}
SUBSET_DEF
⊢ ∀s t. s ⊆ t ⇔ ∀x. x ∈ s ⇒ x ∈ t
SUM_IMAGE_DEF
⊢ ∀f s. ∑ f s = ITSET (λe acc. f e + acc) s 0
SUM_SET_DEF
⊢ SUM_SET = ∑ I
SURJ_DEF
⊢ ∀f s t.
    SURJ f s t ⇔ (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x. x ∈ t ⇒ ∃y. y ∈ s ∧ (f y = x)
UNION_DEF
⊢ ∀s t. s ∪ t = {x | x ∈ s ∨ x ∈ t}
UNIV_DEF
⊢ 𝕌(:α) = (λx. T)
chooser_def
⊢ (∀s. chooser s 0 = CHOICE s) ∧ ∀s n. chooser s (SUC n) = chooser (REST s) n
count_def
⊢ ∀n. count n = {m | m < n}
countable_def
⊢ ∀s. COUNTABLE s ⇔ ∃f. INJ f s 𝕌(:num)
disjUNION_def
⊢ ∀A B. A ⊔ B = {INL a | a ∈ A} ∪ {INR b | b ∈ B}
enumerate_def
⊢ ∀s. enumerate s = @f. BIJ f 𝕌(:num) s
equiv_on_def
⊢ ∀R s.
    R equiv_on s ⇔
    (∀x. x ∈ s ⇒ R x x) ∧ (∀x y. x ∈ s ∧ y ∈ s ⇒ (R x y ⇔ R y x)) ∧
    ∀x y z. x ∈ s ∧ y ∈ s ∧ z ∈ s ∧ R x y ∧ R y z ⇒ R x z
is_measure_maximal_def
⊢ ∀m s x. is_measure_maximal m s x ⇔ x ∈ s ∧ ∀y. y ∈ s ⇒ m y ≤ m x
num_to_pair_def
⊢ ∀n. num_to_pair n = (nfst n,nsnd n)
pair_to_num_def
⊢ ∀m n. pair_to_num (m,n) = m ⊗ n
pairwise_def
⊢ ∀P s. pairwise P s ⇔ ∀e1 e2. e1 ∈ s ∧ e2 ∈ s ⇒ P e1 e2
partition_def
⊢ ∀R s. partition R s = {t | ∃x. x ∈ s ∧ (t = {y | y ∈ s ∧ R x y})}
schroeder_close_def
⊢ ∀f s x. schroeder_close f s x ⇔ ∃n. x ∈ FUNPOW (IMAGE f) n s


Theorems

ABSORPTION
⊢ ∀x s. x ∈ s ⇔ (x INSERT s = s)
ABSORPTION_RWT
⊢ ∀x s. x ∈ s ⇒ (x INSERT s = s)
ABS_DIFF_SUM_IMAGE
⊢ ∀s. FINITE s ⇒ ABS_DIFF (∑ f s) (∑ g s) ≤ ∑ (λx. ABS_DIFF (f x) (g x)) s
BIGINTER_EMPTY
⊢ BIGINTER ∅ = 𝕌(:α)
BIGINTER_INSERT
⊢ ∀P B. BIGINTER (P INSERT B) = P ∩ BIGINTER B
BIGINTER_INTER
⊢ ∀P Q. BIGINTER {P; Q} = P ∩ Q
BIGINTER_SING
⊢ ∀P. BIGINTER {P} = P
BIGINTER_SUBSET
⊢ ∀sp s t. t ∈ s ∧ t ⊆ sp ⇒ BIGINTER s ⊆ sp
BIGINTER_UNION
⊢ ∀s1 s2. BIGINTER (s1 ∪ s2) = BIGINTER s1 ∩ BIGINTER s2
BIGINTER_applied
⊢ BIGINTER B x ⇔ ∀P. P ∈ B ⇒ x ∈ P
BIGUNION_CROSS
⊢ ∀f s t. BIGUNION (IMAGE f s) × t = BIGUNION (IMAGE (λn. f n × t) s)
BIGUNION_EMPTY
⊢ BIGUNION ∅ = ∅
BIGUNION_EQ_EMPTY
⊢ ∀P. ((BIGUNION P = ∅) ⇔ (P = ∅) ∨ (P = {∅})) ∧
      ((∅ = BIGUNION P) ⇔ (P = ∅) ∨ (P = {∅}))
BIGUNION_IMAGE_UNIV
⊢ ∀f N.
    (∀n. N ≤ n ⇒ (f n = ∅)) ⇒
    (BIGUNION (IMAGE f 𝕌(:num)) = BIGUNION (IMAGE f (count N)))
BIGUNION_INSERT
⊢ ∀s P. BIGUNION (s INSERT P) = s ∪ BIGUNION P
BIGUNION_PAIR
⊢ ∀s t. BIGUNION {s; t} = s ∪ t
BIGUNION_SING
⊢ ∀x. BIGUNION {x} = x
BIGUNION_SUBSET
⊢ ∀X P. BIGUNION P ⊆ X ⇔ ∀Y. Y ∈ P ⇒ Y ⊆ X
BIGUNION_UNION
⊢ ∀s1 s2. BIGUNION (s1 ∪ s2) = BIGUNION s1 ∪ BIGUNION s2
BIGUNION_applied
⊢ ∀x sos. BIGUNION sos x ⇔ ∃s. x ∈ s ∧ s ∈ sos
BIGUNION_partition
⊢ R equiv_on s ⇒ (BIGUNION (partition R s) = s)
BIJ_ALT
⊢ ∀f s t. BIJ f s t ⇔ f ∈ (s → t) ∧ ∀y. y ∈ t ⇒ ∃!x. x ∈ s ∧ (y = f x)
BIJ_COMPOSE
⊢ ∀f g s t u. BIJ f s t ∧ BIJ g t u ⇒ BIJ (g ∘ f) s u
BIJ_DELETE
⊢ ∀s t f. BIJ f s t ⇒ ∀e. e ∈ s ⇒ BIJ f (s DELETE e) (t DELETE f e)
BIJ_EMPTY
⊢ ∀f. (∀s. BIJ f ∅ s ⇔ (s = ∅)) ∧ ∀s. BIJ f s ∅ ⇔ (s = ∅)
BIJ_FINITE
⊢ ∀f s t. BIJ f s t ∧ FINITE s ⇒ FINITE t
BIJ_FINITE_SUBSET
⊢ ∀f s t. BIJ f 𝕌(:num) s ∧ FINITE t ∧ t ⊆ s ⇒ ∃N. ∀n. N ≤ n ⇒ f n ∉ t
BIJ_ID
⊢ ∀s. (λx. x) PERMUTES s
BIJ_IFF_INV
⊢ ∀f s t.
    BIJ f s t ⇔
    (∀x. x ∈ s ⇒ f x ∈ t) ∧
    ∃g. (∀x. x ∈ t ⇒ g x ∈ s) ∧ (∀x. x ∈ s ⇒ (g (f x) = x)) ∧
        ∀x. x ∈ t ⇒ (f (g x) = x)
BIJ_IMAGE
⊢ ∀f s t. BIJ f s t ⇒ (t = IMAGE f s)
BIJ_IMP_11
⊢ BIJ f 𝕌(:α) 𝕌(:β) ⇒ ∀x y. (f x = f y) ⇔ (x = y)
BIJ_INJ_SURJ
⊢ ∀s t. (∃f. INJ f s t) ∧ (∃g. SURJ g s t) ⇒ ∃h. BIJ h s t
BIJ_INSERT
⊢ ∀f e s t.
    BIJ f (e INSERT s) t ⇔
    e ∉ s ∧ f e ∈ t ∧ BIJ f s (t DELETE f e) ∨ e ∈ s ∧ BIJ f s t
BIJ_INSERT_IMP
⊢ ∀f e s t.
    e ∉ s ∧ BIJ f (e INSERT s) t ⇒
    ∃u. (f e INSERT u = t) ∧ f e ∉ u ∧ BIJ f s u
BIJ_INV
⊢ ∀f s t.
    BIJ f s t ⇒
    ∃g. BIJ g t s ∧ (∀x. x ∈ s ⇒ ((g ∘ f) x = x)) ∧
        ∀x. x ∈ t ⇒ ((f ∘ g) x = x)
BIJ_LINV_BIJ
⊢ ∀f s t. BIJ f s t ⇒ BIJ (LINV f s) t s
BIJ_LINV_INV
⊢ ∀f s t. BIJ f s t ⇒ ∀x. x ∈ t ⇒ (f (LINV f s x) = x)
BIJ_NUM_COUNTABLE
⊢ ∀s. (∃f. BIJ f 𝕌(:num) s) ⇒ COUNTABLE s
BIJ_SYM
⊢ ∀s t. (∃f. BIJ f s t) ⇔ ∃g. BIJ g t s
BIJ_SYM_IMP
⊢ ∀s t. (∃f. BIJ f s t) ⇒ ∃g. BIJ g t s
BIJ_TRANS
⊢ ∀s t u. (∃f. BIJ f s t) ∧ (∃g. BIJ g t u) ⇒ ∃h. BIJ h s u
BIJ_support
⊢ ∀f s' s. f PERMUTES s' ∧ s' ⊆ s ∧ (∀x. x ∉ s' ⇒ (f x = x)) ⇒ f PERMUTES s
CARD_BIGUNION_SAME_SIZED_SETS
⊢ ∀n s.
    FINITE s ∧ (∀e. e ∈ s ⇒ FINITE e ∧ (CARD e = n)) ∧
    (∀e1 e2. e1 ∈ s ∧ e2 ∈ s ∧ e1 ≠ e2 ⇒ DISJOINT e1 e2) ⇒
    (CARD (BIGUNION s) = CARD s * n)
CARD_COUNT
⊢ ∀n. CARD (count n) = n
CARD_CROSS
⊢ ∀P Q. FINITE P ∧ FINITE Q ⇒ (CARD (P × Q) = CARD P * CARD Q)
CARD_DELETE
⊢ ∀s. FINITE s ⇒ ∀x. CARD (s DELETE x) = if x ∈ s then CARD s − 1 else CARD s
CARD_DIFF
⊢ ∀t. FINITE t ⇒ ∀s. FINITE s ⇒ (CARD (s DIFF t) = CARD s − CARD (s ∩ t))
CARD_DIFF_EQN
⊢ ∀t s. FINITE s ⇒ (CARD (s DIFF t) = CARD s − CARD (s ∩ t))
CARD_EMPTY
⊢ CARD ∅ = 0
CARD_EQ_0
⊢ ∀s. FINITE s ⇒ ((CARD s = 0) ⇔ (s = ∅))
CARD_IMAGE
⊢ ∀s. FINITE s ⇒ CARD (IMAGE f s) ≤ CARD s
CARD_INJ_IMAGE
⊢ ∀f s. (∀x y. (f x = f y) ⇔ (x = y)) ∧ FINITE s ⇒ (CARD (IMAGE f s) = CARD s)
CARD_INSERT
⊢ ∀s. FINITE s ⇒
      ∀x. CARD (x INSERT s) = if x ∈ s then CARD s else SUC (CARD s)
CARD_INTER_LESS_EQ
⊢ ∀s. FINITE s ⇒ ∀t. CARD (s ∩ t) ≤ CARD s
CARD_LE_MAX_SET
⊢ FINITE s ⇒ CARD s ≤ MAX_SET s + 1
CARD_POW
⊢ ∀s. FINITE s ⇒ (CARD (POW s) = 2 ** CARD s)
CARD_PSUBSET
⊢ ∀s. FINITE s ⇒ ∀t. t ⊂ s ⇒ CARD t < CARD s
CARD_REST
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ (CARD (REST s) = CARD s − 1)
CARD_SING
⊢ ∀x. CARD {x} = 1
CARD_SING_CROSS
⊢ ∀x P. FINITE P ⇒ (CARD ({x} × P) = CARD P)
CARD_SUBSET
⊢ ∀s. FINITE s ⇒ ∀t. t ⊆ s ⇒ CARD t ≤ CARD s
CARD_UNION
⊢ ∀s. FINITE s ⇒
      ∀t. FINITE t ⇒ (CARD (s ∪ t) + CARD (s ∩ t) = CARD s + CARD t)
CARD_UNION_EQN
⊢ ∀s t. FINITE s ∧ FINITE t ⇒ (CARD (s ∪ t) = CARD s + CARD t − CARD (s ∩ t))
CARD_UNION_LE
⊢ FINITE s ∧ FINITE t ⇒ CARD (s ∪ t) ≤ CARD s + CARD t
CARD_disjUNION
⊢ FINITE s ∧ FINITE t ⇒ (CARD (s ⊔ t) = CARD s + CARD t)
CHOICE_INSERT_REST
⊢ ∀s. s ≠ ∅ ⇒ (CHOICE s INSERT REST s = s)
CHOICE_INTRO
⊢ (∃x. x ∈ s) ∧ (∀x. x ∈ s ⇒ P x) ⇒ P (CHOICE s)
CHOICE_NOT_IN_REST
⊢ ∀s. CHOICE s ∉ REST s
CHOICE_SING
⊢ ∀x. CHOICE {x} = x
COMMUTING_ITSET_INSERT
⊢ ∀f s.
    (∀x y z. f x (f y z) = f y (f x z)) ∧ FINITE s ⇒
    ∀x b. ITSET f (x INSERT s) b = ITSET f (s DELETE x) (f x b)
COMMUTING_ITSET_RECURSES
⊢ ∀f e s b.
    (∀x y z. f x (f y z) = f y (f x z)) ∧ FINITE s ⇒
    (ITSET f (e INSERT s) b = f e (ITSET f (s DELETE e) b))
COMPL_CLAUSES
⊢ ∀s. (COMPL s ∩ s = ∅) ∧ (COMPL s ∪ s = 𝕌(:α))
COMPL_COMPL
⊢ ∀s. COMPL (COMPL s) = s
COMPL_EMPTY
⊢ COMPL ∅ = 𝕌(:α)
COMPL_INTER
⊢ (x ∩ COMPL x = ∅) ∧ (COMPL x ∩ x = ∅)
COMPL_SPLITS
⊢ ∀p q. p ∩ q ∪ COMPL p ∩ q = q
COMPL_UNION
⊢ COMPL (s ∪ t) = COMPL s ∩ COMPL t
COMPL_applied
⊢ ∀x s. COMPL s x ⇔ x ∉ s
COMPONENT
⊢ ∀x s. x ∈ x INSERT s
COUNTABLE_ALT
⊢ ∀s. COUNTABLE s ⇔ ∃f. ∀x. x ∈ s ⇒ ∃n. f n = x
COUNTABLE_ALT_BIJ
⊢ ∀s. COUNTABLE s ⇔ FINITE s ∨ BIJ (enumerate s) 𝕌(:num) s
COUNTABLE_COUNT
⊢ ∀n. COUNTABLE (count n)
COUNTABLE_ENUM
⊢ ∀c. COUNTABLE c ⇔ (c = ∅) ∨ ∃f. c = IMAGE f 𝕌(:num)
COUNTABLE_IMAGE_NUM
⊢ ∀f s. COUNTABLE (IMAGE f s)
COUNTABLE_NUM
⊢ ∀s. COUNTABLE s
COUNTABLE_SUBSET
⊢ ∀s t. s ⊆ t ∧ COUNTABLE t ⇒ COUNTABLE s
COUNT_11
⊢ ∀n1 n2. (count n1 = count n2) ⇔ (n1 = n2)
COUNT_DELETE
⊢ ∀n. count n DELETE n = count n
COUNT_MONO
⊢ ∀m n. m ≤ n ⇒ count m ⊆ count n
COUNT_NOT_EMPTY
⊢ ∀n. 0 < n ⇔ count n ≠ ∅
COUNT_SUC
⊢ ∀n. count (SUC n) = n INSERT count n
COUNT_ZERO
⊢ count 0 = ∅
COUNT_applied
⊢ ∀m n. count n m ⇔ m < n
CROSS_BIGUNION
⊢ ∀f s t. s × BIGUNION (IMAGE f t) = BIGUNION (IMAGE (λn. s × f n) t)
CROSS_EMPTY
⊢ ∀P. (P × ∅ = ∅) ∧ (∅ × P = ∅)
CROSS_EMPTY_EQN
⊢ (s × t = ∅) ⇔ (s = ∅) ∨ (t = ∅)
CROSS_EQNS
⊢ ∀s1 s2. (∅ × s2 = ∅) ∧ ((a INSERT s1) × s2 = IMAGE (λy. (a,y)) s2 ∪ s1 × s2)
CROSS_INSERT_LEFT
⊢ ∀P Q x. (x INSERT P) × Q = {x} × Q ∪ P × Q
CROSS_INSERT_RIGHT
⊢ ∀P Q x. P × (x INSERT Q) = P × {x} ∪ P × Q
CROSS_SINGS
⊢ ∀x y. {x} × {y} = {(x,y)}
CROSS_SUBSET
⊢ ∀P Q P0 Q0. P0 × Q0 ⊆ P × Q ⇔ (P0 = ∅) ∨ (Q0 = ∅) ∨ P0 ⊆ P ∧ Q0 ⊆ Q
CROSS_UNIV
⊢ 𝕌(:α # β) = 𝕌(:α) × 𝕌(:β)
CROSS_applied
⊢ ∀P Q x. (P × Q) x ⇔ FST x ∈ P ∧ SND x ∈ Q
DECOMPOSITION
⊢ ∀s x. x ∈ s ⇔ ∃t. (s = x INSERT t) ∧ x ∉ t
DELETE_COMM
⊢ ∀x y s. s DELETE x DELETE y = s DELETE y DELETE x
DELETE_DELETE
⊢ ∀x s. s DELETE x DELETE x = s DELETE x
DELETE_EQ_SING
⊢ ∀s x. x ∈ s ⇒ ((s DELETE x = ∅) ⇔ (s = {x}))
DELETE_INSERT
⊢ ∀x y s.
    (x INSERT s) DELETE y = if x = y then s DELETE y else x INSERT s DELETE y
DELETE_INTER
⊢ ∀s t x. (s DELETE x) ∩ t = s ∩ t DELETE x
DELETE_NON_ELEMENT
⊢ ∀x s. x ∉ s ⇔ (s DELETE x = s)
DELETE_NON_ELEMENT_RWT
⊢ ∀s x. x ∉ s ⇒ (s DELETE x = s)
DELETE_SUBSET
⊢ ∀x s. s DELETE x ⊆ s
DELETE_SUBSET_INSERT
⊢ ∀s e s2. s DELETE e ⊆ s2 ⇔ s ⊆ e INSERT s2
DELETE_applied
⊢ ∀s x y. (s DELETE y) x ⇔ x ∈ s ∧ x ≠ y
DFUNSET_applied
⊢ ∀f P Q. (P ⟶ Q) f ⇔ ∀x. x ∈ P ⇒ f x ∈ Q x
DIFF_BIGINTER
⊢ ∀sp s.
    (∀t. t ∈ s ⇒ t ⊆ sp) ∧ s ≠ ∅ ⇒
    (BIGINTER s = sp DIFF BIGUNION (IMAGE (λu. sp DIFF u) s))
DIFF_BIGINTER1
⊢ ∀sp s. sp DIFF BIGINTER s = BIGUNION (IMAGE (λu. sp DIFF u) s)
DIFF_COMM
⊢ ∀x y z. x DIFF y DIFF z = x DIFF z DIFF y
DIFF_DIFF
⊢ ∀s t. s DIFF t DIFF t = s DIFF t
DIFF_DIFF_SUBSET
⊢ ∀s t. t ⊆ s ⇒ (s DIFF (s DIFF t) = t)
DIFF_EMPTY
⊢ ∀s. s DIFF ∅ = s
DIFF_EQ_EMPTY
⊢ ∀s. s DIFF s = ∅
DIFF_INSERT
⊢ ∀s t x. s DIFF (x INSERT t) = s DELETE x DIFF t
DIFF_INTER
⊢ ∀s t g. (s DIFF t) ∩ g = s ∩ g DIFF t
DIFF_INTER2
⊢ ∀s t. s DIFF t ∩ s = s DIFF t
DIFF_INTER_COMPL
⊢ ∀s t. s DIFF t = s ∩ COMPL t
DIFF_INTER_SUBSET
⊢ ∀r s t. r ⊆ s ⇒ (r DIFF s ∩ t = r DIFF t)
DIFF_SAME_UNION
⊢ ∀x y. (x ∪ y DIFF x = y DIFF x) ∧ (x ∪ y DIFF y = x DIFF y)
DIFF_SUBSET
⊢ ∀s t. s DIFF t ⊆ s
DIFF_UNION
⊢ ∀x y z. x DIFF (y ∪ z) = x DIFF y DIFF z
DIFF_UNIV
⊢ ∀s. s DIFF 𝕌(:α) = ∅
DIFF_applied
⊢ ∀s t x. (s DIFF t) x ⇔ x ∈ s ∧ x ∉ t
DISJOINT_ALT
⊢ ∀s t. DISJOINT s t ⇔ ∀x. x ∈ s ⇒ x ∉ t
DISJOINT_BIGINTER
⊢ ∀X Y P.
    Y ∈ P ∧ DISJOINT Y X ⇒ DISJOINT X (BIGINTER P) ∧ DISJOINT (BIGINTER P) X
DISJOINT_BIGUNION
⊢ (∀s t. DISJOINT (BIGUNION s) t ⇔ ∀s'. s' ∈ s ⇒ DISJOINT s' t) ∧
  ∀s t. DISJOINT t (BIGUNION s) ⇔ ∀s'. s' ∈ s ⇒ DISJOINT t s'
DISJOINT_COUNT
⊢ ∀f. (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
      ∀n. DISJOINT (f n) (BIGUNION (IMAGE f (count n)))
DISJOINT_DELETE_SYM
⊢ ∀s t x. DISJOINT (s DELETE x) t ⇔ DISJOINT (t DELETE x) s
DISJOINT_DIFF
⊢ ∀s t. DISJOINT t (s DIFF t) ∧ DISJOINT (s DIFF t) t
DISJOINT_DIFFS
⊢ ∀f g m n.
    (∀n. f n ⊆ f (SUC n)) ∧ (∀n. g n = f (SUC n) DIFF f n) ∧ m ≠ n ⇒
    DISJOINT (g m) (g n)
DISJOINT_EMPTY
⊢ ∀s. DISJOINT ∅ s ∧ DISJOINT s ∅
DISJOINT_EMPTY_REFL
⊢ ∀s. (s = ∅) ⇔ DISJOINT s s
DISJOINT_EMPTY_REFL_RWT
⊢ ∀s. DISJOINT s s ⇔ (s = ∅)
DISJOINT_IMAGE
⊢ (∀x y. (f x = f y) ⇔ (x = y)) ⇒
  (DISJOINT (IMAGE f s1) (IMAGE f s2) ⇔ DISJOINT s1 s2)
DISJOINT_INSERT
⊢ ∀x s t. DISJOINT (x INSERT s) t ⇔ DISJOINT s t ∧ x ∉ t
DISJOINT_INSERT'
⊢ ∀x s t. DISJOINT t (x INSERT s) ⇔ DISJOINT t s ∧ x ∉ t
DISJOINT_SING_EMPTY
⊢ ∀x. DISJOINT {x} ∅
DISJOINT_SUBSET
⊢ ∀s t u. DISJOINT s t ∧ u ⊆ t ⇒ DISJOINT s u
DISJOINT_SYM
⊢ ∀s t. DISJOINT s t ⇔ DISJOINT t s
DISJOINT_UNION
⊢ ∀s t u. DISJOINT (s ∪ t) u ⇔ DISJOINT s u ∧ DISJOINT t u
DISJOINT_UNION_BOTH
⊢ ∀s t u.
    (DISJOINT (s ∪ t) u ⇔ DISJOINT s u ∧ DISJOINT t u) ∧
    (DISJOINT u (s ∪ t) ⇔ DISJOINT s u ∧ DISJOINT t u)
ELT_IN_DELETE
⊢ ∀x s. x ∉ s DELETE x
EMPTY_DELETE
⊢ ∀x. ∅ DELETE x = ∅
EMPTY_DIFF
⊢ ∀s. ∅ DIFF s = ∅
EMPTY_FUNSET
⊢ ∀s. ∅ → s = 𝕌(:α -> β)
EMPTY_IN_POW
⊢ ∀s. ∅ ∈ POW s
EMPTY_NOT_IN_partition
⊢ R equiv_on s ⇒ ∅ ∉ partition R s
EMPTY_NOT_UNIV
⊢ ∅ ≠ 𝕌(:α)
EMPTY_SUBSET
⊢ ∀s. ∅ ⊆ s
EMPTY_UNION
⊢ ∀s t. (s ∪ t = ∅) ⇔ (s = ∅) ∧ (t = ∅)
EMPTY_applied
⊢ ∅ x ⇔ F
ENUMERATE
⊢ ∀s. (∃f. BIJ f 𝕌(:num) s) ⇔ BIJ (enumerate s) 𝕌(:num) s
EQUAL_SING
⊢ ∀x y. ({x} = {y}) ⇔ (x = y)
EQ_SUBSET_SUBSET
⊢ ∀s t. (s = t) ⇒ s ⊆ t ∧ t ⊆ s
EQ_UNIV
⊢ (∀x. x ∈ s) ⇔ (s = 𝕌(:α))
EXISTS_IN_IMAGE
⊢ ∀P f s. (∃y. y ∈ IMAGE f s ∧ P y) ⇔ ∃x. x ∈ s ∧ P (f x)
EXISTS_IN_INSERT
⊢ ∀P a s. (∃x. x ∈ a INSERT s ∧ P x) ⇔ P a ∨ ∃x. x ∈ s ∧ P x
EXPLICIT_ENUMERATE_MONO
⊢ ∀n s. FUNPOW REST n s ⊆ s
EXPLICIT_ENUMERATE_NOT_EMPTY
⊢ ∀n s. INFINITE s ⇒ FUNPOW REST n s ≠ ∅
EXTENSION
⊢ ∀s t. (s = t) ⇔ ∀x. x ∈ s ⇔ x ∈ t
FINITELY_INJECTIVE_IMAGE_FINITE
⊢ ∀f. (∀x. FINITE {y | x = f y}) ⇒ ∀s. FINITE (IMAGE f s) ⇔ FINITE s
FINITE_BIGINTER
⊢ (∃s. s ∈ P ∧ FINITE s) ⇒ FINITE (BIGINTER P)
FINITE_BIGUNION
⊢ ∀P. FINITE P ∧ (∀s. s ∈ P ⇒ FINITE s) ⇒ FINITE (BIGUNION P)
FINITE_BIGUNION_EQ
⊢ ∀P. FINITE (BIGUNION P) ⇔ FINITE P ∧ ∀s. s ∈ P ⇒ FINITE s
FINITE_BIJ
⊢ ∀f s t. FINITE s ∧ BIJ f s t ⇒ FINITE t ∧ (CARD s = CARD t)
FINITE_BIJ_CARD
⊢ ∀f s t. FINITE s ∧ BIJ f s t ⇒ (CARD s = CARD t)
FINITE_BIJ_CARD_EQ
⊢ ∀S. FINITE S ⇒ ∀t f. BIJ f S t ∧ FINITE t ⇒ (CARD S = CARD t)
FINITE_BIJ_COUNT
⊢ ∀s. FINITE s ⇒ ∃f b. BIJ f (count b) s
FINITE_BIJ_COUNT_EQ
⊢ ∀s. FINITE s ⇔ ∃c n. BIJ c (count n) s
FINITE_COMPLETE_INDUCTION
⊢ ∀P. (∀x. (∀y. y ⊂ x ⇒ P y) ⇒ FINITE x ⇒ P x) ⇒ ∀x. FINITE x ⇒ P x
FINITE_COUNT
⊢ ∀n. FINITE (count n)
FINITE_CROSS
⊢ ∀P Q. FINITE P ∧ FINITE Q ⇒ FINITE (P × Q)
FINITE_CROSS_EQ
⊢ ∀P Q. FINITE (P × Q) ⇔ (P = ∅) ∨ (Q = ∅) ∨ FINITE P ∧ FINITE Q
FINITE_DELETE
⊢ ∀x s. FINITE (s DELETE x) ⇔ FINITE s
FINITE_DIFF
⊢ ∀s. FINITE s ⇒ ∀t. FINITE (s DIFF t)
FINITE_DIFF_down
⊢ ∀P Q. FINITE (P DIFF Q) ∧ FINITE Q ⇒ FINITE P
FINITE_EMPTY
⊢ FINITE ∅
FINITE_HAS_SIZE
⊢ ∀s. FINITE s ⇔ s HAS_SIZE CARD s
FINITE_INDUCT
⊢ ∀P. P ∅ ∧ (∀s. FINITE s ∧ P s ⇒ ∀e. e ∉ s ⇒ P (e INSERT s)) ⇒
      ∀s. FINITE s ⇒ P s
FINITE_INJ
⊢ ∀f s t. INJ f s t ∧ FINITE t ⇒ FINITE s
FINITE_INSERT
⊢ ∀x s. FINITE (x INSERT s) ⇔ FINITE s
FINITE_INTER
⊢ ∀s1 s2. FINITE s1 ∨ FINITE s2 ⇒ FINITE (s1 ∩ s2)
FINITE_ISO_NUM
⊢ ∀s. FINITE s ⇒
      ∃f. (∀n m. n < CARD s ∧ m < CARD s ⇒ (f n = f m) ⇒ (n = m)) ∧
          (s = {f n | n < CARD s})
FINITE_POW
⊢ ∀s. FINITE s ⇒ FINITE (POW s)
FINITE_POW_EQN
⊢ FINITE (POW s) ⇔ FINITE s
FINITE_PREIMAGE
⊢ (∀x y. (f x = f y) ⇔ (x = y)) ∧ FINITE s ⇒ FINITE (PREIMAGE f s)
FINITE_PSUBSET_INFINITE
⊢ ∀s. INFINITE s ⇔ ∀t. FINITE t ⇒ t ⊆ s ⇒ t ⊂ s
FINITE_PSUBSET_UNIV
⊢ INFINITE 𝕌(:α) ⇔ ∀s. FINITE s ⇒ s ⊂ 𝕌(:α)
FINITE_REST
⊢ ∀s. FINITE s ⇒ FINITE (REST s)
FINITE_REST_EQ
⊢ ∀s. FINITE (REST s) ⇔ FINITE s
FINITE_SING
⊢ ∀x. FINITE {x}
FINITE_SURJ
⊢ FINITE s ∧ SURJ f s t ⇒ FINITE t
FINITE_SURJ_BIJ
⊢ FINITE s ∧ SURJ f s t ∧ (CARD t = CARD s) ⇒ BIJ f s t
FINITE_StrongOrder_WF
⊢ ∀R s. FINITE s ∧ StrongOrder (REL_RESTRICT R s) ⇒ WF (REL_RESTRICT R s)
FINITE_UNION
⊢ ∀s t. FINITE (s ∪ t) ⇔ FINITE s ∧ FINITE t
FINITE_WEAK_ENUMERATE
⊢ ∀s. FINITE s ⇔ ∃f b. ∀e. e ∈ s ⇔ ∃n. n < b ∧ (e = f n)
FINITE_WF_noloops
⊢ ∀s. FINITE s ⇒ (WF (REL_RESTRICT R s) ⇔ irreflexive (REL_RESTRICT R s)⁺)
FINITE_is_measure_maximal
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ ∃x. is_measure_maximal m s x
FINITE_partition
⊢ ∀R s. FINITE s ⇒ FINITE (partition R s) ∧ ∀t. t ∈ partition R s ⇒ FINITE t
FORALL_IN_BIGUNION
⊢ ∀P s. (∀x. x ∈ BIGUNION s ⇒ P x) ⇔ ∀t x. t ∈ s ∧ x ∈ t ⇒ P x
FORALL_IN_IMAGE
⊢ ∀P f s. (∀y. y ∈ IMAGE f s ⇒ P y) ⇔ ∀x. x ∈ s ⇒ P (f x)
FORALL_IN_INSERT
⊢ ∀P a s. (∀x. x ∈ a INSERT s ⇒ P x) ⇔ P a ∧ ∀x. x ∈ s ⇒ P x
FORALL_IN_UNION
⊢ ∀P s t. (∀x. x ∈ s ∪ t ⇒ P x) ⇔ (∀x. x ∈ s ⇒ P x) ∧ ∀x. x ∈ t ⇒ P x
FUNSET_DFUNSET
⊢ ∀x y. x → y = x ⟶ K y
FUNSET_EMPTY
⊢ ∀s f. f ∈ (s → ∅) ⇔ (s = ∅)
FUNSET_INTER
⊢ ∀a b c. a → b ∩ c = (a → b) ∩ (a → c)
FUNSET_THM
⊢ ∀s t f x. f ∈ (s → t) ∧ x ∈ s ⇒ f x ∈ t
FUNSET_applied
⊢ ∀f P Q. (P → Q) f ⇔ ∀x. x ∈ P ⇒ f x ∈ Q
GSPECIFICATION_applied
⊢ ∀f v. GSPEC f v ⇔ ∃x. (v,T) = f x
GSPEC_AND
⊢ ∀P Q. {x | P x ∧ Q x} = {x | P x} ∩ {x | Q x}
GSPEC_EQ
⊢ {x | x = y} = {y}
GSPEC_EQ2
⊢ {x | y = x} = {y}
GSPEC_ETA
⊢ {x | P x} = P
GSPEC_F
⊢ {x | F} = ∅
GSPEC_F_COND
⊢ ∀f. (∀x. ¬SND (f x)) ⇒ (GSPEC f = ∅)
GSPEC_ID
⊢ {x | x ∈ y} = y
GSPEC_IMAGE
⊢ GSPEC f = IMAGE (FST ∘ f) (SND ∘ f)
GSPEC_OR
⊢ ∀P Q. {x | P x ∨ Q x} = {x | P x} ∪ {x | Q x}
GSPEC_PAIR_ETA
⊢ {(x,y) | P x y} = Pᴾ
GSPEC_T
⊢ {x | T} = 𝕌(:α)
HAS_SIZE_0
⊢ ∀s. s HAS_SIZE 0 ⇔ (s = ∅)
HAS_SIZE_CARD
⊢ ∀s n. s HAS_SIZE n ⇒ (CARD s = n)
HAS_SIZE_SUC
⊢ ∀s n. s HAS_SIZE SUC n ⇔ s ≠ ∅ ∧ ∀a. a ∈ s ⇒ s DELETE a HAS_SIZE n
IMAGE_11
⊢ (∀x y. (f x = f y) ⇔ (x = y)) ⇒ ((IMAGE f s1 = IMAGE f s2) ⇔ (s1 = s2))
IMAGE_11_INFINITE
⊢ ∀f. (∀x y. (f x = f y) ⇒ (x = y)) ⇒ ∀s. INFINITE s ⇒ INFINITE (IMAGE f s)
IMAGE_BIGUNION
⊢ ∀f M. IMAGE f (BIGUNION M) = BIGUNION (IMAGE (IMAGE f) M)
IMAGE_COMPOSE
⊢ ∀f g s. IMAGE (f ∘ g) s = IMAGE f (IMAGE g s)
IMAGE_CONG
⊢ ∀f s f' s'.
    (s = s') ∧ (∀x. x ∈ s' ⇒ (f x = f' x)) ⇒ (IMAGE f s = IMAGE f' s')
IMAGE_DELETE
⊢ ∀f x s. x ∉ s ⇒ (IMAGE f (s DELETE x) = IMAGE f s)
IMAGE_EMPTY
⊢ ∀f. IMAGE f ∅ = ∅
IMAGE_EQ_EMPTY
⊢ ∀s f. ((IMAGE f s = ∅) ⇔ (s = ∅)) ∧ ((∅ = IMAGE f s) ⇔ (s = ∅))
IMAGE_EQ_SING
⊢ (IMAGE f s = {z}) ⇔ s ≠ ∅ ∧ ∀x. x ∈ s ⇒ (f x = z)
IMAGE_FINITE
⊢ ∀s. FINITE s ⇒ ∀f. FINITE (IMAGE f s)
IMAGE_I
⊢ IMAGE I s = s
IMAGE_ID
⊢ ∀s. IMAGE (λx. x) s = s
IMAGE_II
⊢ IMAGE I = I
IMAGE_IMAGE
⊢ ∀f g s. IMAGE f (IMAGE g s) = IMAGE (f ∘ g) s
IMAGE_IN
⊢ ∀x s. x ∈ s ⇒ ∀f. f x ∈ IMAGE f s
IMAGE_INSERT
⊢ ∀f x s. IMAGE f (x INSERT s) = f x INSERT IMAGE f s
IMAGE_INTER
⊢ ∀f s t. IMAGE f (s ∩ t) ⊆ IMAGE f s ∩ IMAGE f t
IMAGE_PREIMAGE
⊢ ∀f s. IMAGE f (PREIMAGE f s) ⊆ s
IMAGE_SING
⊢ ∀f x. IMAGE f {x} = {f x}
IMAGE_SUBSET
⊢ ∀s t. s ⊆ t ⇒ ∀f. IMAGE f s ⊆ IMAGE f t
IMAGE_SUBSET_gen
⊢ ∀f s u t. s ⊆ u ∧ IMAGE f u ⊆ t ⇒ IMAGE f s ⊆ t
IMAGE_SURJ
⊢ ∀f s t. SURJ f s t ⇔ (IMAGE f s = t)
IMAGE_UNION
⊢ ∀f s t. IMAGE f (s ∪ t) = IMAGE f s ∪ IMAGE f t
IMAGE_applied
⊢ ∀y s f. IMAGE f s y ⇔ ∃x. (y = f x) ∧ x ∈ s
INFINITE_DIFF_FINITE
⊢ ∀s t. INFINITE s ∧ FINITE t ⇒ s DIFF t ≠ ∅
INFINITE_EXPLICIT_ENUMERATE
⊢ ∀s. INFINITE s ⇒ INJ (λn. CHOICE (FUNPOW REST n s)) 𝕌(:num) s
INFINITE_INHAB
⊢ ∀P. INFINITE P ⇒ ∃x. x ∈ P
INFINITE_INJ
⊢ ∀f s t. INJ f s t ∧ INFINITE s ⇒ INFINITE t
INFINITE_INJ_NOT_SURJ
⊢ ∀s. INFINITE s ⇔ ∃f. INJ f s s ∧ ¬SURJ f s s
INFINITE_NUM_UNIV
⊢ INFINITE 𝕌(:num)
INFINITE_PAIR_UNIV
⊢ FINITE 𝕌(:α # β) ⇔ FINITE 𝕌(:α) ∧ FINITE 𝕌(:β)
INFINITE_SUBSET
⊢ ∀s. INFINITE s ⇒ ∀t. s ⊆ t ⇒ INFINITE t
INFINITE_UNIV
⊢ INFINITE 𝕌(:α) ⇔ ∃f. (∀x y. (f x = f y) ⇒ (x = y)) ∧ ∃y. ∀x. f x ≠ y
INJECTIVE_IMAGE_FINITE
⊢ ∀f. (∀x y. (f x = f y) ⇔ (x = y)) ⇒ ∀s. FINITE (IMAGE f s) ⇔ FINITE s
INJ_BIJ_SUBSET
⊢ s0 ⊆ s ∧ INJ f s t ⇒ BIJ f s0 (IMAGE f s0)
INJ_CARD
⊢ ∀f s t. INJ f s t ∧ FINITE t ⇒ CARD s ≤ CARD t
INJ_CARD_IMAGE
⊢ ∀s. FINITE s ⇒ INJ f s t ⇒ (CARD (IMAGE f s) = CARD s)
INJ_CARD_IMAGE_EQ
⊢ INJ f s t ⇒ FINITE s ⇒ (CARD (IMAGE f s) = CARD s)
INJ_COMPOSE
⊢ ∀f g s t u. INJ f s t ∧ INJ g t u ⇒ INJ (g ∘ f) s u
INJ_DELETE
⊢ ∀f s t. INJ f s t ⇒ ∀e. e ∈ s ⇒ INJ f (s DELETE e) (t DELETE f e)
INJ_EMPTY
⊢ ∀f. (∀s. INJ f ∅ s) ∧ ∀s. INJ f s ∅ ⇔ (s = ∅)
INJ_EXTEND
⊢ ∀b s t x y.
    INJ b s t ∧ x ∉ s ∧ y ∉ t ⇒ INJ b⦇x ↦ y⦈ (x INSERT s) (y INSERT t)
INJ_ID
⊢ ∀s. INJ (λx. x) s s
INJ_IFF
⊢ INJ f s t ⇔
  (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x y. x ∈ s ∧ y ∈ s ⇒ ((f x = f y) ⇔ (x = y))
INJ_IMAGE
⊢ ∀f s t. INJ f s t ⇒ INJ f s (IMAGE f s)
INJ_IMAGE_BIJ
⊢ ∀s f. (∃t. INJ f s t) ⇒ BIJ f s (IMAGE f s)
INJ_IMAGE_SUBSET
⊢ ∀f s t. INJ f s t ⇒ IMAGE f s ⊆ t
INJ_INL
⊢ (∀x. x ∈ s ⇒ INL x ∈ t) ⇒ INJ INL s t
INJ_INR
⊢ (∀x. x ∈ s ⇒ INR x ∈ t) ⇒ INJ INR s t
INJ_INSERT
⊢ ∀f x s t.
    INJ f (x INSERT s) t ⇔
    INJ f s t ∧ f x ∈ t ∧ ∀y. y ∈ s ∧ (f x = f y) ⇒ (x = y)
INJ_LINV_OPT
⊢ INJ f s t ⇒ ∀x y. (LINV_OPT f s y = SOME x) ⇔ (y = f x) ∧ x ∈ s ∧ y ∈ t
INJ_LINV_OPT_IMAGE
⊢ INJ (LINV_OPT f s) (IMAGE f s) (IMAGE SOME s)
INJ_SUBSET
⊢ ∀f s t s0 t0. INJ f s t ∧ s0 ⊆ s ∧ t ⊆ t0 ⇒ INJ f s0 t0
INSERT_COMM
⊢ ∀x y s. x INSERT y INSERT s = y INSERT x INSERT s
INSERT_DELETE
⊢ ∀x s. x ∈ s ⇒ (x INSERT s DELETE x = s)
INSERT_DIFF
⊢ ∀s t x. (x INSERT s) DIFF t = if x ∈ t then s DIFF t else x INSERT s DIFF t
INSERT_EQ_SING
⊢ ∀s x y. (x INSERT s = {y}) ⇔ (x = y) ∧ s ⊆ {y}
INSERT_INSERT
⊢ ∀x s. x INSERT x INSERT s = x INSERT s
INSERT_INTER
⊢ ∀x s t. (x INSERT s) ∩ t = if x ∈ t then x INSERT s ∩ t else s ∩ t
INSERT_SING_UNION
⊢ ∀s x. x INSERT s = {x} ∪ s
INSERT_SUBSET
⊢ ∀x s t. x INSERT s ⊆ t ⇔ x ∈ t ∧ s ⊆ t
INSERT_UNION
⊢ ∀x s t. (x INSERT s) ∪ t = if x ∈ t then s ∪ t else x INSERT s ∪ t
INSERT_UNION_EQ
⊢ ∀x s t. (x INSERT s) ∪ t = x INSERT s ∪ t
INSERT_UNIV
⊢ ∀x. x INSERT 𝕌(:α) = 𝕌(:α)
INSERT_applied
⊢ ∀x y s. (y INSERT s) x ⇔ (x = y) ∨ x ∈ s
INTER_ASSOC
⊢ ∀s t u. s ∩ (t ∩ u) = s ∩ t ∩ u
INTER_BIGUNION
⊢ (∀s t. BIGUNION s ∩ t = BIGUNION {x ∩ t | x ∈ s}) ∧
  ∀s t. t ∩ BIGUNION s = BIGUNION {t ∩ x | x ∈ s}
INTER_COMM
⊢ ∀s t. s ∩ t = t ∩ s
INTER_CROSS
⊢ ∀A B C D. A × B ∩ (C × D) = A ∩ C × (B ∩ D)
INTER_EMPTY
⊢ (∀s. ∅ ∩ s = ∅) ∧ ∀s. s ∩ ∅ = ∅
INTER_FINITE
⊢ ∀s. FINITE s ⇒ ∀t. FINITE (s ∩ t)
INTER_IDEMPOT
⊢ ∀s. s ∩ s = s
INTER_OVER_UNION
⊢ ∀s t u. s ∪ t ∩ u = (s ∪ t) ∩ (s ∪ u)
INTER_SUBSET
⊢ (∀s t. s ∩ t ⊆ s) ∧ ∀s t. t ∩ s ⊆ s
INTER_SUBSET_EQN
⊢ ((A ∩ B = A) ⇔ A ⊆ B) ∧ ((A ∩ B = B) ⇔ B ⊆ A)
INTER_UNION
⊢ ((A ∪ B) ∩ A = A) ∧ ((B ∪ A) ∩ A = A) ∧ (A ∩ (A ∪ B) = A) ∧
  (A ∩ (B ∪ A) = A)
INTER_UNION_COMPL
⊢ ∀s t. s ∩ t = COMPL (COMPL s ∪ COMPL t)
INTER_UNIV
⊢ (∀s. 𝕌(:α) ∩ s = s) ∧ ∀s. s ∩ 𝕌(:α) = s
INTER_applied
⊢ ∀s t x. (s ∩ t) x ⇔ x ∈ s ∧ x ∈ t
IN_ABS
⊢ ∀x P. x ∈ (λx. P x) ⇔ P x
IN_APP
⊢ ∀x P. x ∈ P ⇔ P x
IN_BIGINTER
⊢ x ∈ BIGINTER B ⇔ ∀P. P ∈ B ⇒ x ∈ P
IN_BIGINTER_IMAGE
⊢ ∀x f s. x ∈ BIGINTER (IMAGE f s) ⇔ ∀y. y ∈ s ⇒ x ∈ f y
IN_BIGUNION
⊢ ∀x sos. x ∈ BIGUNION sos ⇔ ∃s. x ∈ s ∧ s ∈ sos
IN_BIGUNION_IMAGE
⊢ ∀f s y. y ∈ BIGUNION (IMAGE f s) ⇔ ∃x. x ∈ s ∧ y ∈ f x
IN_COMPL
⊢ ∀x s. x ∈ COMPL s ⇔ x ∉ s
IN_COUNT
⊢ ∀m n. m ∈ count n ⇔ m < n
IN_CROSS
⊢ ∀P Q x. x ∈ P × Q ⇔ FST x ∈ P ∧ SND x ∈ Q
IN_DELETE
⊢ ∀s x y. x ∈ s DELETE y ⇔ x ∈ s ∧ x ≠ y
IN_DELETE_EQ
⊢ ∀s x x'. (x ∈ s ⇔ x' ∈ s) ⇔ (x ∈ s DELETE x' ⇔ x' ∈ s DELETE x)
IN_DFUNSET
⊢ ∀f P Q. f ∈ P ⟶ Q ⇔ ∀x. x ∈ P ⇒ f x ∈ Q x
IN_DIFF
⊢ ∀s t x. x ∈ s DIFF t ⇔ x ∈ s ∧ x ∉ t
IN_DISJOINT
⊢ ∀s t. DISJOINT s t ⇔ ¬∃x. x ∈ s ∧ x ∈ t
IN_EQ_UNIV_IMP
⊢ ∀s. (s = 𝕌(:α)) ⇒ ∀v. v ∈ s
IN_FUNSET
⊢ ∀f P Q. f ∈ (P → Q) ⇔ ∀x. x ∈ P ⇒ f x ∈ Q
IN_GSPEC
⊢ ∀y x P. P y ∧ (x = f y) ⇒ x ∈ {f x | P x}
IN_GSPEC_IFF
⊢ y ∈ {x | P x} ⇔ P y
IN_IMAGE
⊢ ∀y s f. y ∈ IMAGE f s ⇔ ∃x. (y = f x) ∧ x ∈ s
IN_INFINITE_NOT_FINITE
⊢ ∀s t. INFINITE s ∧ FINITE t ⇒ ∃x. x ∈ s ∧ x ∉ t
IN_INSERT
⊢ ∀x y s. x ∈ y INSERT s ⇔ (x = y) ∨ x ∈ s
IN_INSERT_EXPAND
⊢ ∀x y P. x ∈ y INSERT P ⇔ (x = y) ∨ x ≠ y ∧ x ∈ P
IN_INTER
⊢ ∀s t x. x ∈ s ∩ t ⇔ x ∈ s ∧ x ∈ t
IN_POW
⊢ ∀set e. e ∈ POW set ⇔ e ⊆ set
IN_PREIMAGE
⊢ ∀f s x. x ∈ PREIMAGE f s ⇔ f x ∈ s
IN_REST
⊢ ∀x s. x ∈ REST s ⇔ x ∈ s ∧ x ≠ CHOICE s
IN_SING
⊢ ∀x y. x ∈ {y} ⇔ (x = y)
IN_UNION
⊢ ∀s t x. x ∈ s ∪ t ⇔ x ∈ s ∨ x ∈ t
IN_UNIV
⊢ ∀x. x ∈ 𝕌(:α)
IN_disjUNION
⊢ (INL a ∈ A ⊔ B ⇔ a ∈ A) ∧ (INR b ∈ A ⊔ B ⇔ b ∈ B)
ITSET_EMPTY
⊢ ∀f b. ITSET f ∅ b = b
ITSET_IND
⊢ ∀P. (∀s b. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s) (f (CHOICE s) b)) ⇒ P s b) ⇒
      ∀v v1. P v v1
ITSET_INSERT
⊢ ∀s. FINITE s ⇒
      ∀f x b.
        ITSET f (x INSERT s) b =
        ITSET f (REST (x INSERT s)) (f (CHOICE (x INSERT s)) b)
ITSET_THM
⊢ ∀s f b.
    FINITE s ⇒
    (ITSET f s b = if s = ∅ then b else ITSET f (REST s) (f (CHOICE s) b))
ITSET_def
⊢ ∀s f b.
    ITSET f s b =
    if FINITE s then if s = ∅ then b else ITSET f (REST s) (f (CHOICE s) b)
    else ARB
ITSET_ind
⊢ ∀P. (∀s b. (FINITE s ∧ s ≠ ∅ ⇒ P (REST s) (f (CHOICE s) b)) ⇒ P s b) ⇒
      ∀v v1. P v v1
K_SUBSET
⊢ ∀x y. K x ⊆ y ⇔ ¬x ∨ 𝕌(:α) ⊆ y
KoenigsLemma
⊢ ∀R. (∀x. FINITE {y | R x y}) ⇒
      ∀x. INFINITE {y | R꙳ x y} ⇒ ∃f. (f 0 = x) ∧ ∀n. R (f n) (f (SUC n))
KoenigsLemma_WF
⊢ ∀R. (∀x. FINITE {y | R x y}) ∧ WF Rᵀ ⇒ ∀x. FINITE {y | R꙳ x y}
LESS_CARD_DIFF
⊢ ∀t. FINITE t ⇒ ∀s. FINITE s ⇒ CARD t < CARD s ⇒ 0 < CARD (s DIFF t)
LINV_DEF
⊢ ∀f s t. INJ f s t ⇒ ∀x. x ∈ s ⇒ (LINV f s (f x) = x)
LINV_OPT_THM
⊢ (LINV_OPT f s y = SOME x) ⇒ x ∈ s ∧ (f x = y)
MAX_SET_ELIM
⊢ ∀P Q.
    FINITE P ∧ ((P = ∅) ⇒ Q 0) ∧ (∀x. (∀y. y ∈ P ⇒ y ≤ x) ∧ x ∈ P ⇒ Q x) ⇒
    Q (MAX_SET P)
MAX_SET_REWRITES
⊢ (MAX_SET ∅ = 0) ∧ (MAX_SET {e} = e)
MAX_SET_THM
⊢ (MAX_SET ∅ = 0) ∧
  ∀e s. FINITE s ⇒ (MAX_SET (e INSERT s) = MAX e (MAX_SET s))
MAX_SET_UNION
⊢ ∀A B. FINITE A ∧ FINITE B ⇒ (MAX_SET (A ∪ B) = MAX (MAX_SET A) (MAX_SET B))
MEMBER_NOT_EMPTY
⊢ ∀s. (∃x. x ∈ s) ⇔ s ≠ ∅
MIN_SET_ELIM
⊢ ∀P Q. P ≠ ∅ ∧ (∀x. (∀y. y ∈ P ⇒ x ≤ y) ∧ x ∈ P ⇒ Q x) ⇒ Q (MIN_SET P)
MIN_SET_LEM
⊢ ∀s. s ≠ ∅ ⇒ MIN_SET s ∈ s ∧ ∀x. x ∈ s ⇒ MIN_SET s ≤ x
MIN_SET_LEQ_MAX_SET
⊢ ∀s. s ≠ ∅ ∧ FINITE s ⇒ MIN_SET s ≤ MAX_SET s
MIN_SET_THM
⊢ (∀e. MIN_SET {e} = e) ∧
  ∀s e1 e2. MIN_SET (e1 INSERT e2 INSERT s) = MIN e1 (MIN_SET (e2 INSERT s))
MIN_SET_UNION
⊢ ∀A B.
    FINITE A ∧ FINITE B ∧ A ≠ ∅ ∧ B ≠ ∅ ⇒
    (MIN_SET (A ∪ B) = MIN (MIN_SET A) (MIN_SET B))
NOT_EMPTY_INSERT
⊢ ∀x s. ∅ ≠ x INSERT s
NOT_EMPTY_SING
⊢ ∀x. ∅ ≠ {x}
NOT_EQUAL_SETS
⊢ ∀s t. s ≠ t ⇔ ∃x. x ∈ t ⇔ x ∉ s
NOT_INSERT_EMPTY
⊢ ∀x s. x INSERT s ≠ ∅
NOT_IN_EMPTY
⊢ ∀x. x ∉ ∅
NOT_IN_FINITE
⊢ INFINITE 𝕌(:α) ⇔ ∀s. FINITE s ⇒ ∃x. x ∉ s
NOT_PSUBSET_EMPTY
⊢ ∀s. ¬(s ⊂ ∅)
NOT_SING_EMPTY
⊢ ∀x. {x} ≠ ∅
NOT_UNIV_PSUBSET
⊢ ∀s. ¬(𝕌(:α) ⊂ s)
NUM_SET_WOP
⊢ ∀s. (∃n. n ∈ s) ⇔ ∃n. n ∈ s ∧ ∀m. m ∈ s ⇒ n ≤ m
PAIR_IN_GSPEC_1
⊢ (a,b) ∈ {(y,x) | P y} ⇔ P a ∧ (b = x)
PAIR_IN_GSPEC_2
⊢ (a,b) ∈ {(x,y) | P y} ⇔ P b ∧ (a = x)
PAIR_IN_GSPEC_IFF
⊢ (x,y) ∈ {(x,y) | P x y} ⇔ P x y
PAIR_IN_GSPEC_same
⊢ (a,b) ∈ {(x,x) | P x} ⇔ P a ∧ (a = b)
PHP
⊢ ∀f s t. FINITE t ∧ CARD t < CARD s ⇒ ¬INJ f s t
POW_EMPTY
⊢ ∀s. POW s ≠ ∅
POW_EQNS
⊢ (POW ∅ = {∅}) ∧
  ∀e s. POW (e INSERT s) = (let ps = POW s in IMAGE ($INSERT e) ps ∪ ps)
POW_INSERT
⊢ ∀e s. POW (e INSERT s) = IMAGE ($INSERT e) (POW s) ∪ POW s
POW_applied
⊢ ∀set e. POW set e ⇔ e ⊆ set
PREIMAGE_ALT
⊢ ∀f s. PREIMAGE f s = s ∘ f
PREIMAGE_BIGUNION
⊢ ∀f s. PREIMAGE f (BIGUNION s) = BIGUNION (IMAGE (PREIMAGE f) s)
PREIMAGE_COMP
⊢ ∀f g s. PREIMAGE f (PREIMAGE g s) = PREIMAGE (g ∘ f) s
PREIMAGE_COMPL
⊢ ∀f s. PREIMAGE f (COMPL s) = COMPL (PREIMAGE f s)
PREIMAGE_COMPL_INTER
⊢ ∀f t sp. PREIMAGE f (COMPL t) ∩ sp = sp DIFF PREIMAGE f t
PREIMAGE_CROSS
⊢ ∀f a b. PREIMAGE f (a × b) = PREIMAGE (FST ∘ f) a ∩ PREIMAGE (SND ∘ f) b
PREIMAGE_DIFF
⊢ ∀f s t. PREIMAGE f (s DIFF t) = PREIMAGE f s DIFF PREIMAGE f t
PREIMAGE_DISJOINT
⊢ ∀f s t. DISJOINT s t ⇒ DISJOINT (PREIMAGE f s) (PREIMAGE f t)
PREIMAGE_EMPTY
⊢ ∀f. PREIMAGE f ∅ = ∅
PREIMAGE_I
⊢ PREIMAGE I = I
PREIMAGE_IMAGE
⊢ ∀f s. s ⊆ PREIMAGE f (IMAGE f s)
PREIMAGE_INTER
⊢ ∀f s t. PREIMAGE f (s ∩ t) = PREIMAGE f s ∩ PREIMAGE f t
PREIMAGE_K
⊢ ∀x s. PREIMAGE (K x) s = if x ∈ s then 𝕌(:β) else ∅
PREIMAGE_SUBSET
⊢ ∀f s t. s ⊆ t ⇒ PREIMAGE f s ⊆ PREIMAGE f t
PREIMAGE_UNION
⊢ ∀f s t. PREIMAGE f (s ∪ t) = PREIMAGE f s ∪ PREIMAGE f t
PREIMAGE_UNIV
⊢ ∀f. PREIMAGE f 𝕌(:β) = 𝕌(:α)
PREIMAGE_applied
⊢ ∀f s x. PREIMAGE f s x ⇔ f x ∈ s
PROD_IMAGE_THM
⊢ ∀f. (∏ f ∅ = 1) ∧
      ∀e s. FINITE s ⇒ (∏ f (e INSERT s) = f e * ∏ f (s DELETE e))
PROD_SET_EMPTY
⊢ PROD_SET ∅ = 1
PROD_SET_IMAGE_REDUCTION
⊢ ∀f s x.
    FINITE (IMAGE f s) ∧ f x ∉ IMAGE f s ⇒
    (PROD_SET (IMAGE f (x INSERT s)) = f x * PROD_SET (IMAGE f s))
PROD_SET_THM
⊢ (PROD_SET ∅ = 1) ∧
  ∀x s. FINITE s ⇒ (PROD_SET (x INSERT s) = x * PROD_SET (s DELETE x))
PSUBSET_EQN
⊢ ∀s1 s2. s1 ⊂ s2 ⇔ s1 ⊆ s2 ∧ ¬(s2 ⊆ s1)
PSUBSET_FINITE
⊢ ∀s. FINITE s ⇒ ∀t. t ⊂ s ⇒ FINITE t
PSUBSET_INSERT_SUBSET
⊢ ∀s t. s ⊂ t ⇔ ∃x. x ∉ s ∧ x INSERT s ⊆ t
PSUBSET_IRREFL
⊢ ∀s. ¬(s ⊂ s)
PSUBSET_MEMBER
⊢ ∀s t. s ⊂ t ⇔ s ⊆ t ∧ ∃y. y ∈ t ∧ y ∉ s
PSUBSET_SING
⊢ ∀s x. x ⊂ {s} ⇔ (x = ∅)
PSUBSET_SUBSET_TRANS
⊢ ∀s t u. s ⊂ t ∧ t ⊆ u ⇒ s ⊂ u
PSUBSET_TRANS
⊢ ∀s t u. s ⊂ t ∧ t ⊂ u ⇒ s ⊂ u
PSUBSET_UNIV
⊢ ∀s. s ⊂ 𝕌(:α) ⇔ ∃x. x ∉ s
RC_PSUBSET
⊢ RC $PSUBSET = $SUBSET
RC_SUBSET_THM
⊢ RC $SUBSET = $SUBSET
REL_RESTRICT_EMPTY
⊢ REL_RESTRICT R ∅ = ∅ᵣ
REL_RESTRICT_SUBSET
⊢ s1 ⊆ s2 ⇒ REL_RESTRICT R s1 ⊆ᵣ REL_RESTRICT R s2
REST_PSUBSET
⊢ ∀s. s ≠ ∅ ⇒ REST s ⊂ s
REST_SING
⊢ ∀x. REST {x} = ∅
REST_SUBSET
⊢ ∀s. REST s ⊆ s
REST_applied
⊢ ∀x s. REST s x ⇔ x ∈ s ∧ x ≠ CHOICE s
RINV_DEF
⊢ ∀f s t. SURJ f s t ⇒ ∀x. x ∈ t ⇒ (f (RINV f s x) = x)
RTC_PSUBSET
⊢ $PSUBSET꙳ = $SUBSET
RTC_SUBSET_THM
⊢ $SUBSET꙳ = $SUBSET
SCHROEDER_BERNSTEIN
⊢ ∀s t. (∃f. INJ f s t) ∧ (∃g. INJ g t s) ⇒ ∃h. BIJ h s t
SCHROEDER_BERNSTEIN_AUTO
⊢ ∀s t. t ⊆ s ∧ (∃f. INJ f s t) ⇒ ∃g. BIJ g s t
SCHROEDER_CLOSE
⊢ ∀f s. x ∈ schroeder_close f s ⇔ ∃n. x ∈ FUNPOW (IMAGE f) n s
SCHROEDER_CLOSED
⊢ ∀f s. IMAGE f (schroeder_close f s) ⊆ schroeder_close f s
SCHROEDER_CLOSE_SET
⊢ ∀f s t. f ∈ (s → s) ∧ t ⊆ s ⇒ schroeder_close f t ⊆ s
SCHROEDER_CLOSE_SUBSET
⊢ ∀f s. s ⊆ schroeder_close f s
SET_CASES
⊢ ∀s. (s = ∅) ∨ ∃x t. (s = x INSERT t) ∧ x ∉ t
SET_EQ_SUBSET
⊢ ∀s t. (s = t) ⇔ s ⊆ t ∧ t ⊆ s
SET_MINIMUM
⊢ ∀s M. (∃x. x ∈ s) ⇔ ∃x. x ∈ s ∧ ∀y. y ∈ s ⇒ M x ≤ M y
SING
⊢ ∀x. SING {x}
SING_DELETE
⊢ ∀x. {x} DELETE x = ∅
SING_EMPTY
⊢ SING ∅ ⇔ F
SING_FINITE
⊢ ∀s. SING s ⇒ FINITE s
SING_IFF_CARD1
⊢ ∀s. SING s ⇔ (CARD s = 1) ∧ FINITE s
SING_IFF_EMPTY_REST
⊢ ∀s. SING s ⇔ s ≠ ∅ ∧ (REST s = ∅)
SING_INSERT
⊢ SING (x INSERT s) ⇔ (s = ∅) ∨ (s = {x})
SING_UNION
⊢ SING (s ∪ t) ⇔
  SING s ∧ (t = ∅) ∨ SING t ∧ (s = ∅) ∨ SING s ∧ SING t ∧ (s = t)
SING_applied
⊢ ∀x y. {y} x ⇔ (x = y)
SPECIFICATION
⊢ ∀P x. x ∈ P ⇔ P x
SUBSET_ADD
⊢ ∀f n d. (∀n. f n ⊆ f (SUC n)) ⇒ f n ⊆ f (n + d)
SUBSET_ANTISYM
⊢ ∀s t. s ⊆ t ∧ t ⊆ s ⇒ (s = t)
SUBSET_ANTISYM_EQ
⊢ ∀s t. s ⊆ t ∧ t ⊆ s ⇔ (s = t)
SUBSET_BIGINTER
⊢ ∀X P. X ⊆ BIGINTER P ⇔ ∀Y. Y ∈ P ⇒ X ⊆ Y
SUBSET_BIGUNION
⊢ ∀f g. f ⊆ g ⇒ BIGUNION f ⊆ BIGUNION g
SUBSET_BIGUNION_I
⊢ ∀x P. x ∈ P ⇒ x ⊆ BIGUNION P
SUBSET_CROSS
⊢ ∀a b c d. a ⊆ b ∧ c ⊆ d ⇒ a × c ⊆ b × d
SUBSET_DELETE
⊢ ∀x s t. s ⊆ t DELETE x ⇔ x ∉ s ∧ s ⊆ t
SUBSET_DELETE_BOTH
⊢ ∀s1 s2 x. s1 ⊆ s2 ⇒ s1 DELETE x ⊆ s2 DELETE x
SUBSET_DIFF
⊢ ∀s1 s2 s3. s1 ⊆ s2 DIFF s3 ⇔ s1 ⊆ s2 ∧ DISJOINT s1 s3
SUBSET_DIFF_EMPTY
⊢ ∀s t. (s DIFF t = ∅) ⇔ s ⊆ t
SUBSET_DISJOINT
⊢ ∀s t u v. DISJOINT s t ∧ u ⊆ s ∧ v ⊆ t ⇒ DISJOINT u v
SUBSET_EMPTY
⊢ ∀s. s ⊆ ∅ ⇔ (s = ∅)
SUBSET_EQ_CARD
⊢ ∀s. FINITE s ⇒ ∀t. FINITE t ∧ (CARD s = CARD t) ∧ s ⊆ t ⇒ (s = t)
SUBSET_FINITE
⊢ ∀s. FINITE s ⇒ ∀t. t ⊆ s ⇒ FINITE t
SUBSET_FINITE_I
⊢ ∀s t. FINITE s ∧ t ⊆ s ⇒ FINITE t
SUBSET_IMAGE
⊢ ∀f s t. s ⊆ IMAGE f t ⇔ ∃u. u ⊆ t ∧ (s = IMAGE f u)
SUBSET_INSERT
⊢ ∀x s. x ∉ s ⇒ ∀t. s ⊆ x INSERT t ⇔ s ⊆ t
SUBSET_INSERT_DELETE
⊢ ∀x s t. s ⊆ x INSERT t ⇔ s DELETE x ⊆ t
SUBSET_INSERT_RIGHT
⊢ ∀e s1 s2. s1 ⊆ s2 ⇒ s1 ⊆ e INSERT s2
SUBSET_INTER
⊢ ∀s t u. s ⊆ t ∩ u ⇔ s ⊆ t ∧ s ⊆ u
SUBSET_INTER1
⊢ ∀s t. s ⊆ t ⇒ (s ∩ t = s)
SUBSET_INTER2
⊢ ∀s t. s ⊆ t ⇒ (t ∩ s = s)
SUBSET_INTER_ABSORPTION
⊢ ∀s t. s ⊆ t ⇔ (s ∩ t = s)
SUBSET_K
⊢ ∀x y. x ⊆ K y ⇔ x ⊆ ∅ ∨ y
SUBSET_MAX_SET
⊢ ∀I J. FINITE I ∧ FINITE J ∧ I ⊆ J ⇒ MAX_SET I ≤ MAX_SET J
SUBSET_MIN_SET
⊢ ∀I J n. I ≠ ∅ ∧ J ≠ ∅ ∧ I ⊆ J ⇒ MIN_SET J ≤ MIN_SET I
SUBSET_OF_INSERT
⊢ ∀x s. s ⊆ x INSERT s
SUBSET_POW
⊢ ∀s1 s2. s1 ⊆ s2 ⇒ POW s1 ⊆ POW s2
SUBSET_PSUBSET_TRANS
⊢ ∀s t u. s ⊆ t ∧ t ⊂ u ⇒ s ⊂ u
SUBSET_REFL
⊢ ∀s. s ⊆ s
SUBSET_THM
⊢ ∀P Q. P ⊆ Q ⇒ ∀x. x ∈ P ⇒ x ∈ Q
SUBSET_TRANS
⊢ ∀s t u. s ⊆ t ∧ t ⊆ u ⇒ s ⊆ u
SUBSET_UNION
⊢ (∀s t. s ⊆ s ∪ t) ∧ ∀s t. s ⊆ t ∪ s
SUBSET_UNION_ABSORPTION
⊢ ∀s t. s ⊆ t ⇔ (s ∪ t = t)
SUBSET_UNIV
⊢ ∀s. s ⊆ 𝕌(:α)
SUBSET_applied
⊢ ∀s t. s ⊆ t ⇔ ∀x. s x ⇒ t x
SUBSET_count_MAX_SET
⊢ FINITE s ⇒ s ⊆ count (MAX_SET s + 1)
SUBSET_reflexive
⊢ reflexive $SUBSET
SUBSET_transitive
⊢ transitive $SUBSET
SUM_IMAGE_CONG
⊢ (s1 = s2) ∧ (∀x. x ∈ s2 ⇒ (f1 x = f2 x)) ⇒ (∑ f1 s1 = ∑ f2 s2)
SUM_IMAGE_DELETE
⊢ ∀f s. FINITE s ⇒ ∀e. ∑ f (s DELETE e) = if e ∈ s then ∑ f s − f e else ∑ f s
SUM_IMAGE_INJ_o
⊢ ∀s. FINITE s ⇒ ∀g. INJ g s 𝕌(:α) ⇒ ∀f. ∑ f (IMAGE g s) = ∑ (f ∘ g) s
SUM_IMAGE_IN_LE
⊢ ∀f s e. FINITE s ∧ e ∈ s ⇒ f e ≤ ∑ f s
SUM_IMAGE_MONO_LESS
⊢ ∀s. FINITE s ⇒
      (∃x. x ∈ s ∧ f x < g x) ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒
      ∑ f s < ∑ g s
SUM_IMAGE_MONO_LESS_EQ
⊢ ∀s. FINITE s ⇒ (∀x. x ∈ s ⇒ f x ≤ g x) ⇒ ∑ f s ≤ ∑ g s
SUM_IMAGE_PERMUTES
⊢ ∀s. FINITE s ⇒ ∀g. g PERMUTES s ⇒ ∀f. ∑ (f ∘ g) s = ∑ f s
SUM_IMAGE_SING
⊢ ∀f e. ∑ f {e} = f e
SUM_IMAGE_SUBSET_LE
⊢ ∀f s t. FINITE s ∧ t ⊆ s ⇒ ∑ f t ≤ ∑ f s
SUM_IMAGE_THM
⊢ ∀f. (∑ f ∅ = 0) ∧
      ∀e s. FINITE s ⇒ (∑ f (e INSERT s) = f e + ∑ f (s DELETE e))
SUM_IMAGE_UNION
⊢ ∀f s t. FINITE s ∧ FINITE t ⇒ (∑ f (s ∪ t) = ∑ f s + ∑ f t − ∑ f (s ∩ t))
SUM_IMAGE_ZERO
⊢ ∀s. FINITE s ⇒ ((∑ f s = 0) ⇔ ∀x. x ∈ s ⇒ (f x = 0))
SUM_IMAGE_lower_bound
⊢ ∀s. FINITE s ⇒ ∀n. (∀x. x ∈ s ⇒ n ≤ f x) ⇒ CARD s * n ≤ ∑ f s
SUM_IMAGE_upper_bound
⊢ ∀s. FINITE s ⇒ ∀n. (∀x. x ∈ s ⇒ f x ≤ n) ⇒ ∑ f s ≤ CARD s * n
SUM_SAME_IMAGE
⊢ ∀P. FINITE P ⇒
      ∀f p. p ∈ P ∧ (∀q. q ∈ P ⇒ (f p = f q)) ⇒ (∑ f P = CARD P * f p)
SUM_SET_DELETE
⊢ ∀s. FINITE s ⇒
      ∀e. SUM_SET (s DELETE e) = if e ∈ s then SUM_SET s − e else SUM_SET s
SUM_SET_EMPTY
⊢ SUM_SET ∅ = 0
SUM_SET_IN_LE
⊢ ∀x s. FINITE s ∧ x ∈ s ⇒ x ≤ SUM_SET s
SUM_SET_SING
⊢ ∀n. SUM_SET {n} = n
SUM_SET_SUBSET_LE
⊢ ∀s t. FINITE t ∧ s ⊆ t ⇒ SUM_SET s ≤ SUM_SET t
SUM_SET_THM
⊢ (SUM_SET ∅ = 0) ∧
  ∀x s. FINITE s ⇒ (SUM_SET (x INSERT s) = x + SUM_SET (s DELETE x))
SUM_SET_UNION
⊢ ∀s t.
    FINITE s ∧ FINITE t ⇒
    (SUM_SET (s ∪ t) = SUM_SET s + SUM_SET t − SUM_SET (s ∩ t))
SUM_SET_count
⊢ SUM_SET (count n) = n * (n − 1) DIV 2
SUM_SET_count_2
⊢ ∀n. 2 * SUM_SET (count n) = n * (n − 1)
SUM_UNIV
⊢ 𝕌(:α + β) = IMAGE INL 𝕌(:α) ∪ IMAGE INR 𝕌(:β)
SURJ_CARD
⊢ ∀s. FINITE s ⇒ ∀t. SURJ f s t ⇒ FINITE t ∧ CARD t ≤ CARD s
SURJ_COMPOSE
⊢ ∀f g s t u. SURJ f s t ∧ SURJ g t u ⇒ SURJ (g ∘ f) s u
SURJ_EMPTY
⊢ ∀f. (∀s. SURJ f ∅ s ⇔ (s = ∅)) ∧ ∀s. SURJ f s ∅ ⇔ (s = ∅)
SURJ_ID
⊢ ∀s. SURJ (λx. x) s s
SURJ_IMAGE
⊢ SURJ f s (IMAGE f s)
SURJ_IMP_INJ
⊢ ∀s t. (∃f. SURJ f s t) ⇒ ∃g. INJ g t s
SURJ_INJ_INV
⊢ SURJ f s t ⇒ ∃g. INJ g t s ∧ ∀y. y ∈ t ⇒ (f (g y) = y)
TC_PSUBSET
⊢ $PSUBSET⁺ = $PSUBSET
TC_SUBSET_THM
⊢ $SUBSET⁺ = $SUBSET
UNION_ASSOC
⊢ ∀s t u. s ∪ (t ∪ u) = s ∪ t ∪ u
UNION_COMM
⊢ ∀s t. s ∪ t = t ∪ s
UNION_DELETE
⊢ ∀A B x. A ∪ B DELETE x = A DELETE x ∪ (B DELETE x)
UNION_DIFF
⊢ s ⊆ t ⇒ (s ∪ (t DIFF s) = t) ∧ (t DIFF s ∪ s = t)
UNION_DIFF_2
⊢ ∀s t. s ∪ (s DIFF t) = s
UNION_DIFF_EQ
⊢ (∀s t. s ∪ (t DIFF s) = s ∪ t) ∧ ∀s t. t DIFF s ∪ s = t ∪ s
UNION_EMPTY
⊢ (∀s. ∅ ∪ s = s) ∧ ∀s. s ∪ ∅ = s
UNION_IDEMPOT
⊢ ∀s. s ∪ s = s
UNION_OVER_INTER
⊢ ∀s t u. s ∩ (t ∪ u) = s ∩ t ∪ s ∩ u
UNION_SUBSET
⊢ ∀s t u. s ∪ t ⊆ u ⇔ s ⊆ u ∧ t ⊆ u
UNION_UNIV
⊢ (∀s. 𝕌(:α) ∪ s = 𝕌(:α)) ∧ ∀s. s ∪ 𝕌(:α) = 𝕌(:α)
UNION_applied
⊢ ∀s t x. (s ∪ t) x ⇔ x ∈ s ∨ x ∈ t
UNIQUE_MEMBER_SING
⊢ ∀x s. x ∈ s ∧ (∀y. y ∈ s ⇒ (x = y)) ⇔ (s = {x})
UNIV_BOOL
⊢ 𝕌(:bool) = {T; F}
UNIV_FUNSET_UNIV
⊢ 𝕌(:α) → 𝕌(:β) = 𝕌(:α -> β)
UNIV_FUN_TO_BOOL
⊢ 𝕌(:α -> bool) = POW 𝕌(:α)
UNIV_NOT_EMPTY
⊢ 𝕌(:α) ≠ ∅
UNIV_SUBSET
⊢ ∀s. 𝕌(:α) ⊆ s ⇔ (s = 𝕌(:α))
UNIV_applied
⊢ ∀x. 𝕌(:α) x
X_LE_MAX_SET
⊢ ∀s. FINITE s ⇒ ∀x. x ∈ s ⇒ x ≤ MAX_SET s
bigunion_countable
⊢ ∀s. COUNTABLE s ∧ (∀x. x ∈ s ⇒ COUNTABLE x) ⇒ COUNTABLE (BIGUNION s)
chooser_compute
⊢ (∀s. chooser s 0 = CHOICE s) ∧
  (∀s n.
     chooser s (NUMERAL (BIT1 n)) = chooser (REST s) (NUMERAL (BIT1 n) − 1)) ∧
  ∀s n. chooser s (NUMERAL (BIT2 n)) = chooser (REST s) (NUMERAL (BIT1 n))
compl_insert
⊢ ∀s x. COMPL (x INSERT s) = COMPL s DELETE x
count_EQN
⊢ ∀n. count n = if n = 0 then ∅ else (let p = PRE n in p INSERT count p)
count_add
⊢ ∀n m. count (n + m) = count n ∪ IMAGE ($+ n) (count m)
count_add1
⊢ ∀n. count (n + 1) = n INSERT count n
countable_EMPTY
⊢ COUNTABLE ∅
countable_INSERT
⊢ COUNTABLE (x INSERT s) ⇔ COUNTABLE s
countable_Uprod
⊢ COUNTABLE 𝕌(:α # β) ⇔ COUNTABLE 𝕌(:α) ∧ COUNTABLE 𝕌(:β)
countable_Usum
⊢ COUNTABLE 𝕌(:α + β) ⇔ COUNTABLE 𝕌(:α) ∧ COUNTABLE 𝕌(:β)
countable_image_nats
⊢ COUNTABLE (IMAGE f 𝕌(:num))
countable_surj
⊢ ∀s. COUNTABLE s ⇔ (s = ∅) ∨ ∃f. SURJ f 𝕌(:num) s
cross_countable
⊢ ∀s t. COUNTABLE s ∧ COUNTABLE t ⇒ COUNTABLE (s × t)
cross_countable_IFF
⊢ COUNTABLE (s × t) ⇔ (s = ∅) ∨ (t = ∅) ∨ COUNTABLE s ∧ COUNTABLE t
disjUNION_UNIV
⊢ 𝕌(:α + β) = 𝕌(:α) ⊔ 𝕌(:β)
finite_countable
⊢ ∀s. FINITE s ⇒ COUNTABLE s
image_countable
⊢ ∀f s. COUNTABLE s ⇒ COUNTABLE (IMAGE f s)
in_max_set
⊢ ∀s. FINITE s ⇒ ∀x. x ∈ s ⇒ x ≤ MAX_SET s
infinite_num_inj
⊢ ∀s. INFINITE s ⇔ ∃f. INJ f 𝕌(:num) s
infinite_pow_uncountable
⊢ ∀s. INFINITE s ⇒ ¬COUNTABLE (POW s)
infinite_rest
⊢ ∀s. INFINITE s ⇒ INFINITE (REST s)
inj_countable
⊢ ∀f s t. COUNTABLE t ∧ INJ f s t ⇒ COUNTABLE s
inj_image_countable_IFF
⊢ INJ f s (IMAGE f s) ⇒ (COUNTABLE (IMAGE f s) ⇔ COUNTABLE s)
inj_surj
⊢ ∀f s t. INJ f s t ⇒ (s = ∅) ∨ ∃f'. SURJ f' t s
inter_countable
⊢ ∀s t. COUNTABLE s ∨ COUNTABLE t ⇒ COUNTABLE (s ∩ t)
is_measure_maximal_INSERT
⊢ ∀x s m e y.
    x ∈ s ∧ m e < m x ⇒
    (is_measure_maximal m (e INSERT s) y ⇔ is_measure_maximal m s y)
is_measure_maximal_SING
⊢ is_measure_maximal m {x} y ⇔ (y = x)
num_countable
⊢ COUNTABLE 𝕌(:num)
pair_to_num_formula
⊢ ∀x y. pair_to_num (x,y) = (x + y + 1) * (x + y) DIV 2 + y
pair_to_num_inv
⊢ (∀x. pair_to_num (num_to_pair x) = x) ∧
  ∀x y. num_to_pair (pair_to_num (x,y)) = (x,y)
pairwise_SUBSET
⊢ ∀R s t. pairwise R t ∧ s ⊆ t ⇒ pairwise R s
pairwise_UNION
⊢ pairwise R (s1 ∪ s2) ⇔
  pairwise R s1 ∧ pairwise R s2 ∧ ∀x y. x ∈ s1 ∧ y ∈ s2 ⇒ R x y ∧ R y x
partition_CARD
⊢ ∀R s. R equiv_on s ∧ FINITE s ⇒ (CARD s = ∑ CARD (partition R s))
partition_SUBSET
⊢ ∀R s t. t ∈ partition R s ⇒ t ⊆ s
partition_elements_disjoint
⊢ R equiv_on s ⇒
  ∀t1 t2. t1 ∈ partition R s ∧ t2 ∈ partition R s ∧ t1 ≠ t2 ⇒ DISJOINT t1 t2
partition_elements_interrelate
⊢ R equiv_on s ⇒ ∀t. t ∈ partition R s ⇒ ∀x y. x ∈ t ∧ y ∈ t ⇒ R x y
pow_no_surj
⊢ ∀s. ¬∃f. SURJ f s (POW s)
subset_countable
⊢ ∀s t. COUNTABLE s ∧ t ⊆ s ⇒ COUNTABLE t
transitive_PSUBSET
⊢ transitive $PSUBSET
union_countable
⊢ ∀s t. COUNTABLE s ∧ COUNTABLE t ⇒ COUNTABLE (s ∪ t)
union_countable_IFF
⊢ COUNTABLE (s ∪ t) ⇔ COUNTABLE s ∧ COUNTABLE t