Theory "quotient"

Parents     res_quan   indexedLists   patternMatches

Signature

Constant Type
--> :(α -> γ) -> (β -> δ) -> (γ -> β) -> α -> δ
===> :(α -> α -> bool) -> (β -> β -> bool) -> (α -> β) -> (α -> β) -> bool
?!! :(α -> bool) -> bool
EQUIV :(α -> α -> bool) -> bool
PARTIAL_EQUIV :(α -> α -> bool) -> bool
QUOTIENT :(α -> α -> bool) -> (α -> β) -> (β -> α) -> bool
RES_EXISTS_EQUIV :(α -> α -> bool) -> (α -> bool) -> bool
respects :(α -> α -> β) -> α -> β

Definitions

?!!
⊢ ∀P. $?!! P ⇔ $?! P
EQUIV_def
⊢ ∀E. EQUIV E ⇔ ∀x y. E x y ⇔ (E x = E y)
FUN_MAP
⊢ ∀f g. f ⟶ g = (λh x. g (h (f x)))
FUN_REL
⊢ ∀R1 R2 f g. (R1 ===> R2) f g ⇔ ∀x y. R1 x y ⇒ R2 (f x) (g y)
PARTIAL_EQUIV_def
⊢ ∀R. PARTIAL_EQUIV R ⇔
      (∃x. R x x) ∧ ∀x y. R x y ⇔ R x x ∧ R y y ∧ (R x = R y)
QUOTIENT_def
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇔
    (∀a. abs (rep a) = a) ∧ (∀a. R (rep a) (rep a)) ∧
    ∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)
RES_EXISTS_EQUIV_DEF
⊢ RES_EXISTS_EQUIV =
  (λR P. (∃x::respects R. P x) ∧ ∀x y::respects R. P x ∧ P y ⇒ R x y)
respects_def
⊢ respects = W


Theorems

ABSTRACT_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f. f = (rep1 ⟶ abs2) (RES_ABSTRACT (respects R1) ((abs1 ⟶ rep2) f))
ABSTRACT_RES_ABSTRACT
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 f g. (R1 ===> R2) f g ⇒ (R1 ===> R2) f (RES_ABSTRACT (respects R1) g)
APPLY_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀f x. f x = abs2 ((abs1 ⟶ rep2) f (rep1 x))
APPLY_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f g x y. (R1 ===> R2) f g ∧ R1 x y ⇒ R2 (f x) (g y)
COND_PRS
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒
    ∀a b c. (if a then b else c) = abs (if a then rep b else rep c)
COND_RSP
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒
    ∀a1 a2 b1 b2 c1 c2.
      (a1 ⇔ a2) ∧ R b1 b2 ∧ R c1 c2 ⇒
      R (if a1 then b1 else c1) (if a2 then b2 else c2)
CONJ_IMPLIES
⊢ ∀P P' Q Q'. (P ⇒ Q) ∧ (P' ⇒ Q') ⇒ P ∧ P' ⇒ Q ∧ Q'
C_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀R3 abs3 rep3.
        QUOTIENT R3 abs3 rep3 ⇒
        ∀f x y.
          flip f x y = abs3 (flip ((abs1 ⟶ abs2 ⟶ rep3) f) (rep2 x) (rep1 y))
C_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀R3 abs3 rep3.
        QUOTIENT R3 abs3 rep3 ⇒
        ∀f1 f2 x1 x2 y1 y2.
          (R1 ===> R2 ===> R3) f1 f2 ∧ R2 x1 x2 ∧ R1 y1 y2 ⇒
          R3 (flip f1 x1 y1) (flip f2 x2 y2)
DISJ_IMPLIES
⊢ ∀P P' Q Q'. (P ⇒ Q) ∧ (P' ⇒ Q') ⇒ P ∨ P' ⇒ Q ∨ Q'
EQUALS_EQUIV_IMPLIES
⊢ ∀R. EQUIV R ⇒ R a1 a2 ∧ R b1 b2 ⇒ (a1 = b1) ⇒ R a2 b2
EQUALS_IMPLIES
⊢ ∀P P' Q Q'. (P = Q) ∧ (P' = Q') ⇒ (P = P') ⇒ (Q = Q')
EQUALS_PRS
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x y. (x = y) ⇔ R (rep x) (rep y)
EQUALS_RSP
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒ ∀x1 x2 y1 y2. R x1 x2 ∧ R y1 y2 ⇒ (R x1 y1 ⇔ R x2 y2)
EQUIV_IMP_PARTIAL_EQUIV
⊢ ∀R. EQUIV R ⇒ PARTIAL_EQUIV R
EQUIV_REFL_SYM_TRANS
⊢ ∀R. (∀x y. R x y ⇔ (R x = R y)) ⇔
      (∀x. R x x) ∧ (∀x y. R x y ⇒ R y x) ∧ ∀x y z. R x y ∧ R y z ⇒ R x z
EQUIV_RES_ABSTRACT_LEFT
⊢ ∀R1 R2 f1 f2 x1 x2.
    R2 (f1 x1) (f2 x2) ∧ R1 x1 x1 ⇒
    R2 (RES_ABSTRACT (respects R1) f1 x1) (f2 x2)
EQUIV_RES_ABSTRACT_RIGHT
⊢ ∀R1 R2 f1 f2 x1 x2.
    R2 (f1 x1) (f2 x2) ∧ R1 x2 x2 ⇒
    R2 (f1 x1) (RES_ABSTRACT (respects R1) f2 x2)
EQUIV_RES_EXISTS
⊢ ∀E P. EQUIV E ⇒ (RES_EXISTS (respects E) P ⇔ $? P)
EQUIV_RES_EXISTS_UNIQUE
⊢ ∀E P. EQUIV E ⇒ (RES_EXISTS_UNIQUE (respects E) P ⇔ $?! P)
EQUIV_RES_FORALL
⊢ ∀E P. EQUIV E ⇒ (RES_FORALL (respects E) P ⇔ $! P)
EQ_IMPLIES
⊢ ∀P Q. (P ⇔ Q) ⇒ P ⇒ Q
EXISTS_PRS
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒ ∀f. $? f ⇔ RES_EXISTS (respects R) ((abs ⟶ I) f)
EXISTS_REGULAR
⊢ ∀P Q. (∀x. P x ⇒ Q x) ⇒ $? P ⇒ $? Q
EXISTS_UNIQUE_PRS
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒ ∀f. $?! f ⇔ RES_EXISTS_EQUIV R ((abs ⟶ I) f)
EXISTS_UNIQUE_REGULAR
⊢ ∀P E Q.
    (∀x. P x ⇒ respects E x ∧ Q x) ∧
    (∀x y. respects E x ∧ Q x ∧ respects E y ∧ Q y ⇒ E x y) ⇒
    $?! P ⇒
    RES_EXISTS_EQUIV E Q
FORALL_PRS
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒ ∀f. $! f ⇔ RES_FORALL (respects R) ((abs ⟶ I) f)
FORALL_REGULAR
⊢ ∀P Q. (∀x. P x ⇒ Q x) ⇒ $! P ⇒ $! Q
FUN_MAP_I
⊢ I ⟶ I = I
FUN_MAP_THM
⊢ ∀f g h x. (f ⟶ g) h x = g (h (f x))
FUN_QUOTIENT
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      QUOTIENT (R1 ===> R2) (rep1 ⟶ abs2) (abs1 ⟶ rep2)
FUN_REL_EQ
⊢ $= ===> $= = $=
FUN_REL_EQUALS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f g.
        respects (R1 ===> R2) f ∧ respects (R1 ===> R2) g ⇒
        (((rep1 ⟶ abs2) f = (rep1 ⟶ abs2) g) ⇔ ∀x y. R1 x y ⇒ R2 (f x) (g y))
FUN_REL_EQ_REL
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f g.
        (R1 ===> R2) f g ⇔
        respects (R1 ===> R2) f ∧ respects (R1 ===> R2) g ∧
        ((rep1 ⟶ abs2) f = (rep1 ⟶ abs2) g)
FUN_REL_IMP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f g.
        respects (R1 ===> R2) f ∧ respects (R1 ===> R2) g ∧
        ((rep1 ⟶ abs2) f = (rep1 ⟶ abs2) g) ⇒
        ∀x y. R1 x y ⇒ R2 (f x) (g y)
FUN_REL_MP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f g x y. (R1 ===> R2) f g ∧ R1 x y ⇒ R2 (f x) (g y)
IDENTITY_EQUIV
⊢ EQUIV $=
IDENTITY_QUOTIENT
⊢ QUOTIENT $= I I
IMP_IMPLIES
⊢ ∀P P' Q Q'. (Q ⇒ P) ∧ (P' ⇒ Q') ⇒ (P ⇒ P') ⇒ Q ⇒ Q'
IN_FUN
⊢ ∀f g s x. x ∈ (f ⟶ g) s ⇔ g (f x ∈ s)
IN_RESPECTS
⊢ ∀R x. x ∈ respects R ⇔ R x x
I_PRS
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀e. I e = abs (I (rep e))
I_RSP
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀e1 e2. R e1 e2 ⇒ R (I e1) (I e2)
K_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒ ∀x y. K x y = abs1 (K (rep1 x) (rep2 y))
K_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀x1 x2 y1 y2. R1 x1 x2 ∧ R2 y1 y2 ⇒ R1 (K x1 y1) (K x2 y2)
LAMBDA_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f. (λx. f x) = (rep1 ⟶ abs2) (λx. rep2 (f (abs1 x)))
LAMBDA_PRS1
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f. (λx. f x) = (rep1 ⟶ abs2) (λx. (abs1 ⟶ rep2) f x)
LAMBDA_REP_ABS_RSP
⊢ ∀REL1 abs1 rep1 REL2 abs2 rep2 f1 f2.
    ((∀r r'. REL1 r r' ⇒ REL1 r (rep1 (abs1 r'))) ∧
     ∀r r'. REL2 r r' ⇒ REL2 r (rep2 (abs2 r'))) ∧ (REL1 ===> REL2) f1 f2 ⇒
    (REL1 ===> REL2) f1 ((abs1 ⟶ rep2) ((rep1 ⟶ abs2) f2))
LAMBDA_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f1 f2. (R1 ===> R2) f1 f2 ⇒ (R1 ===> R2) (λx. f1 x) (λy. f2 y)
LEFT_RES_EXISTS_REGULAR
⊢ ∀P R Q. (∀x. R x ⇒ Q x ⇒ P x) ⇒ RES_EXISTS R Q ⇒ $? P
LEFT_RES_FORALL_REGULAR
⊢ ∀P R Q. (∀x. R x ∧ (Q x ⇒ P x)) ⇒ RES_FORALL R Q ⇒ $! P
LET_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f x. LET f x = abs2 (LET ((abs1 ⟶ rep2) f) (rep1 x))
LET_RES_ABSTRACT
⊢ ∀r lam v. v ∈ r ⇒ (LET (RES_ABSTRACT r lam) v = LET lam v)
LET_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f g x y. (R1 ===> R2) f g ∧ R1 x y ⇒ R2 (LET f x) (LET g y)
NOT_IMPLIES
⊢ ∀P Q. (Q ⇒ P) ⇒ ¬P ⇒ ¬Q
QUOTIENT_ABS_REP
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀a. abs (rep a) = a
QUOTIENT_REL
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒ ∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)
QUOTIENT_REL_ABS
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀r s. R r s ⇒ (abs r = abs s)
QUOTIENT_REL_ABS_EQ
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒ ∀r s. R r r ⇒ R s s ⇒ (R r s ⇔ (abs r = abs s))
QUOTIENT_REL_REP
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀a b. R (rep a) (rep b) ⇔ (a = b)
QUOTIENT_REP_ABS
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀r. R r r ⇒ R (rep (abs r)) r
QUOTIENT_REP_REFL
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀a. R (rep a) (rep a)
QUOTIENT_SYM
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x y. R x y ⇒ R y x
QUOTIENT_TRANS
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x y z. R x y ∧ R y z ⇒ R x z
REP_ABS_RSP
⊢ ∀REL abs rep.
    QUOTIENT REL abs rep ⇒ ∀x1 x2. REL x1 x2 ⇒ REL x1 (rep (abs x2))
RESPECTS
⊢ ∀R x. respects R x ⇔ R x x
RESPECTS_MP
⊢ ∀R1 R2 f x y. respects (R1 ===> R2) f ∧ R1 x y ⇒ R2 (f x) (f y)
RESPECTS_REP_ABS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 f x. respects (R1 ===> R2) f ∧ R1 x x ⇒ R2 (f (rep1 (abs1 x))) (f x)
RESPECTS_THM
⊢ ∀R1 R2 f. respects (R1 ===> R2) f ⇔ ∀x y. R1 x y ⇒ R2 (f x) (f y)
RESPECTS_o
⊢ ∀R1 R2 R3 f g.
    respects (R2 ===> R3) f ∧ respects (R1 ===> R2) g ⇒
    respects (R1 ===> R3) (f ∘ g)
RES_ABSTRACT_ABSTRACT
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 f g. (R1 ===> R2) f g ⇒ (R1 ===> R2) (RES_ABSTRACT (respects R1) f) g
RES_ABSTRACT_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f1 f2.
        (R1 ===> R2) f1 f2 ⇒
        (R1 ===> R2) (RES_ABSTRACT (respects R1) f1)
          (RES_ABSTRACT (respects R1) f2)
RES_EXISTS_EQUIV
⊢ ∀R m.
    RES_EXISTS_EQUIV R m ⇔
    (∃x::respects R. m x) ∧ ∀x y::respects R. m x ∧ m y ⇒ R x y
RES_EXISTS_EQUIV_RSP
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒
    ∀f g. (R ===> $<=>) f g ⇒ (RES_EXISTS_EQUIV R f ⇔ RES_EXISTS_EQUIV R g)
RES_EXISTS_PRS
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒
    ∀P f. RES_EXISTS P f ⇔ RES_EXISTS ((abs ⟶ I) P) ((abs ⟶ I) f)
RES_EXISTS_REGULAR
⊢ ∀P Q R. (∀x. R x ⇒ P x ⇒ Q x) ⇒ RES_EXISTS R P ⇒ RES_EXISTS R Q
RES_EXISTS_RSP
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒
    ∀f g.
      (R ===> $<=>) f g ⇒
      (RES_EXISTS (respects R) f ⇔ RES_EXISTS (respects R) g)
RES_EXISTS_UNIQUE_REGULAR
⊢ ∀P R Q.
    (∀x. P x ⇒ Q x) ∧ (∀x y. respects R x ∧ Q x ∧ respects R y ∧ Q y ⇒ R x y) ⇒
    RES_EXISTS_UNIQUE (respects R) P ⇒
    RES_EXISTS_EQUIV R Q
RES_EXISTS_UNIQUE_REGULAR_SAME
⊢ ∀R P Q.
    (R ===> $<=>) P Q ⇒
    RES_EXISTS_UNIQUE (respects R) P ⇒
    RES_EXISTS_EQUIV R Q
RES_EXISTS_UNIQUE_RESPECTS_REGULAR
⊢ ∀R P. RES_EXISTS_UNIQUE (respects R) P ⇒ RES_EXISTS_EQUIV R P
RES_FORALL_PRS
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒
    ∀P f. RES_FORALL P f ⇔ RES_FORALL ((abs ⟶ I) P) ((abs ⟶ I) f)
RES_FORALL_REGULAR
⊢ ∀P Q R. (∀x. R x ⇒ P x ⇒ Q x) ⇒ RES_FORALL R P ⇒ RES_FORALL R Q
RES_FORALL_RSP
⊢ ∀R abs rep.
    QUOTIENT R abs rep ⇒
    ∀f g.
      (R ===> $<=>) f g ⇒
      (RES_FORALL (respects R) f ⇔ RES_FORALL (respects R) g)
RIGHT_RES_EXISTS_REGULAR
⊢ ∀P R Q. (∀x. R x ∧ (P x ⇒ Q x)) ⇒ $? P ⇒ RES_EXISTS R Q
RIGHT_RES_FORALL_REGULAR
⊢ ∀P R Q. (∀x. R x ⇒ P x ⇒ Q x) ⇒ $! P ⇒ RES_FORALL R Q
W_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f x. W f x = abs2 (W ((abs1 ⟶ abs1 ⟶ rep2) f) (rep1 x))
W_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f1 f2 x1 x2.
        (R1 ===> R1 ===> R2) f1 f2 ∧ R1 x1 x2 ⇒ R2 (W f1 x1) (W f2 x2)
literal_case_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f x. literal_case f x = abs2 (literal_case ((abs1 ⟶ rep2) f) (rep1 x))
literal_case_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀f g x y.
        (R1 ===> R2) f g ∧ R1 x y ⇒ R2 (literal_case f x) (literal_case g y)
o_PRS
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀R3 abs3 rep3.
        QUOTIENT R3 abs3 rep3 ⇒
        ∀f g. f ∘ g = (rep1 ⟶ abs3) ((abs2 ⟶ rep3) f ∘ (abs1 ⟶ rep2) g)
o_RSP
⊢ ∀R1 abs1 rep1.
    QUOTIENT R1 abs1 rep1 ⇒
    ∀R2 abs2 rep2.
      QUOTIENT R2 abs2 rep2 ⇒
      ∀R3 abs3 rep3.
        QUOTIENT R3 abs3 rep3 ⇒
        ∀f1 f2 g1 g2.
          (R2 ===> R3) f1 f2 ∧ (R1 ===> R2) g1 g2 ⇒
          (R1 ===> R3) (f1 ∘ g1) (f2 ∘ g2)