- ACS
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi ∧ (cos (acs y) = y)
- ACS_BOUNDS
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi
- ACS_BOUNDS_LT
-
⊢ ∀y. -1 < y ∧ y < 1 ⇒ 0 < acs y ∧ acs y < pi
- ACS_COS
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ (cos (acs y) = y)
- ASN
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2 ∧ (sin (asn y) = y)
- ASN_BOUNDS
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2
- ASN_BOUNDS_LT
-
⊢ ∀y. -1 < y ∧ y < 1 ⇒ -(pi / 2) < asn y ∧ asn y < pi / 2
- ASN_SIN
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ (sin (asn y) = y)
- ATN
-
⊢ ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2 ∧ (tan (atn y) = y)
- ATN_BOUNDS
-
⊢ ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2
- ATN_TAN
-
⊢ ∀y. tan (atn y) = y
- BASE_RPOW_LE
-
⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a powr b ≤ c powr b ⇔ a ≤ c)
- BASE_RPOW_LT
-
⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a powr b < c powr b ⇔ a < c)
- COS_0
-
⊢ cos 0 = 1
- COS_2
-
⊢ cos 2 < 0
- COS_ACS
-
⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ (acs (cos x) = x)
- COS_ADD
-
⊢ ∀x y. cos (x + y) = cos x * cos y − sin x * sin y
- COS_ASN_NZ
-
⊢ ∀x. -1 < x ∧ x < 1 ⇒ cos (asn x) ≠ 0
- COS_ATN_NZ
-
⊢ ∀x. cos (atn x) ≠ 0
- COS_BOUND
-
⊢ ∀x. abs (cos x) ≤ 1
- COS_BOUNDS
-
⊢ ∀x. -1 ≤ cos x ∧ cos x ≤ 1
- COS_CONVERGES
-
⊢ ∀x. (λn. (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) n * x pow n) sums
cos x
- COS_DOUBLE
-
⊢ ∀x. cos (2 * x) = (cos x)² − (sin x)²
- COS_FDIFF
-
⊢ diffs (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) =
(λn. -(λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n)
- COS_ISZERO
-
⊢ ∃!x. 0 ≤ x ∧ x ≤ 2 ∧ (cos x = 0)
- COS_NEG
-
⊢ ∀x. cos (-x) = cos x
- COS_NPI
-
⊢ ∀n. cos (&n * pi) = -1 pow n
- COS_PAIRED
-
⊢ ∀x. (λn. -1 pow n / &FACT (2 * n) * x pow (2 * n)) sums cos x
- COS_PERIODIC
-
⊢ ∀x. cos (x + 2 * pi) = cos x
- COS_PERIODIC_PI
-
⊢ ∀x. cos (x + pi) = -cos x
- COS_PI
-
⊢ cos pi = -1
- COS_PI2
-
⊢ cos (pi / 2) = 0
- COS_POS_PI
-
⊢ ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ 0 < cos x
- COS_POS_PI2
-
⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < cos x
- COS_POS_PI2_LE
-
⊢ ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
- COS_POS_PI_LE
-
⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
- COS_SIN
-
⊢ ∀x. cos x = sin (pi / 2 − x)
- COS_SIN_SQ
-
⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ (cos x = sqrt (1 − (sin x)²))
- COS_SIN_SQRT
-
⊢ ∀x. 0 ≤ cos x ⇒ (cos x = sqrt (1 − (sin x)²))
- COS_TOTAL
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. 0 ≤ x ∧ x ≤ pi ∧ (cos x = y)
- COS_ZERO
-
⊢ ∀x. (cos x = 0) ⇔
(∃n. ¬EVEN n ∧ (x = &n * (pi / 2))) ∨
∃n. ¬EVEN n ∧ (x = -(&n * (pi / 2)))
- COS_ZERO_LEMMA
-
⊢ ∀x. 0 ≤ x ∧ (cos x = 0) ⇒ ∃n. ¬EVEN n ∧ (x = &n * (pi / 2))
- DIFF_ACS
-
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl -(sqrt (1 − x²))⁻¹) x
- DIFF_ACS_LEMMA
-
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl (-sin (acs x))⁻¹) x
- DIFF_ASN
-
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl (sqrt (1 − x²))⁻¹) x
- DIFF_ASN_LEMMA
-
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl (cos (asn x))⁻¹) x
- DIFF_ATN
-
⊢ ∀x. (atn diffl (1 + x²)⁻¹) x
- DIFF_COMPOSITE
-
⊢ ((f diffl l) x ∧ f x ≠ 0 ⇒ ((λx. (f x)⁻¹) diffl -(l / (f x)²)) x) ∧
((f diffl l) x ∧ (g diffl m) x ∧ g x ≠ 0 ⇒
((λx. f x / g x) diffl ((l * g x − m * f x) / (g x)²)) x) ∧
((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x + g x) diffl (l + m)) x) ∧
((f diffl l) x ∧ (g diffl m) x ⇒
((λx. f x * g x) diffl (l * g x + m * f x)) x) ∧
((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x − g x) diffl (l − m)) x) ∧
((f diffl l) x ⇒ ((λx. -f x) diffl -l) x) ∧
((g diffl m) x ⇒ ((λx. g x pow n) diffl (&n * g x pow (n − 1) * m)) x) ∧
((g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x) ∧
((g diffl m) x ⇒ ((λx. sin (g x)) diffl (cos (g x) * m)) x) ∧
((g diffl m) x ⇒ ((λx. cos (g x)) diffl (-sin (g x) * m)) x)
- DIFF_COMPOSITE_EXP
-
⊢ ∀g m x. (g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x
- DIFF_COS
-
⊢ ∀x. (cos diffl -sin x) x
- DIFF_EXP
-
⊢ ∀x. (exp diffl exp x) x
- DIFF_LN
-
⊢ ∀x. 0 < x ⇒ (ln diffl x⁻¹) x
- DIFF_LN_COMPOSITE
-
⊢ ∀g m x. (g diffl m) x ∧ 0 < g x ⇒ ((λx. ln (g x)) diffl ((g x)⁻¹ * m)) x
- DIFF_RPOW
-
⊢ ∀x y. 0 < x ⇒ ((λx. x powr y) diffl (y * x powr (y − 1))) x
- DIFF_SIN
-
⊢ ∀x. (sin diffl cos x) x
- DIFF_TAN
-
⊢ ∀x. cos x ≠ 0 ⇒ (tan diffl (cos x)² ⁻¹) x
- DINT_UNIQ
-
⊢ ∀a b f k1 k2. a ≤ b ∧ Dint (a,b) f k1 ∧ Dint (a,b) f k2 ⇒ (k1 = k2)
- DIVISION_0
-
⊢ ∀a b. (a = b) ⇒ (dsize (λn. if n = 0 then a else b) = 0)
- DIVISION_1
-
⊢ ∀a b. a < b ⇒ (dsize (λn. if n = 0 then a else b) = 1)
- DIVISION_APPEND
-
⊢ ∀a b c.
(∃D1 p1. tdiv (a,b) (D1,p1) ∧ fine g (D1,p1)) ∧
(∃D2 p2. tdiv (b,c) (D2,p2) ∧ fine g (D2,p2)) ⇒
∃D p. tdiv (a,c) (D,p) ∧ fine g (D,p)
- DIVISION_EQ
-
⊢ ∀D a b. division (a,b) D ⇒ ((a = b) ⇔ (dsize D = 0))
- DIVISION_EXISTS
-
⊢ ∀a b g.
a ≤ b ∧ gauge (λx. a ≤ x ∧ x ≤ b) g ⇒
∃D p. tdiv (a,b) (D,p) ∧ fine g (D,p)
- DIVISION_GT
-
⊢ ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D n < D (dsize D)
- DIVISION_LBOUND
-
⊢ ∀D a b. division (a,b) D ⇒ ∀r. a ≤ D r
- DIVISION_LBOUND_LT
-
⊢ ∀D a b. division (a,b) D ∧ dsize D ≠ 0 ⇒ ∀n. a < D (SUC n)
- DIVISION_LE
-
⊢ ∀D a b. division (a,b) D ⇒ a ≤ b
- DIVISION_LHS
-
⊢ ∀D a b. division (a,b) D ⇒ (D 0 = a)
- DIVISION_LT
-
⊢ ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D 0 < D (SUC n)
- DIVISION_LT_GEN
-
⊢ ∀D a b m n. division (a,b) D ∧ m < n ∧ n ≤ dsize D ⇒ D m < D n
- DIVISION_RHS
-
⊢ ∀D a b. division (a,b) D ⇒ (D (dsize D) = b)
- DIVISION_SINGLE
-
⊢ ∀a b. a ≤ b ⇒ division (a,b) (λn. if n = 0 then a else b)
- DIVISION_THM
-
⊢ ∀D a b.
division (a,b) D ⇔
(D 0 = a) ∧ (∀n. n < dsize D ⇒ D n < D (SUC n)) ∧
∀n. n ≥ dsize D ⇒ (D n = b)
- DIVISION_UBOUND
-
⊢ ∀D a b. division (a,b) D ⇒ ∀r. D r ≤ b
- DIVISION_UBOUND_LT
-
⊢ ∀D a b n. division (a,b) D ∧ n < dsize D ⇒ D n < b
- EXP_0
-
⊢ exp 0 = 1
- EXP_ADD
-
⊢ ∀x y. exp (x + y) = exp x * exp y
- EXP_ADD_MUL
-
⊢ ∀x y. exp (x + y) * exp (-x) = exp y
- EXP_CONVERGES
-
⊢ ∀x. (λn. (λn. (&FACT n)⁻¹) n * x pow n) sums exp x
- EXP_FDIFF
-
⊢ diffs (λn. (&FACT n)⁻¹) = (λn. (&FACT n)⁻¹)
- EXP_INJ
-
⊢ ∀x y. (exp x = exp y) ⇔ (x = y)
- EXP_LE_X
-
⊢ ∀x. 0 ≤ x ⇒ 1 + x ≤ exp x
- EXP_LN
-
⊢ ∀x. (exp (ln x) = x) ⇔ 0 < x
- EXP_LT_1
-
⊢ ∀x. 0 < x ⇒ 1 < exp x
- EXP_MONO_IMP
-
⊢ ∀x y. x < y ⇒ exp x < exp y
- EXP_MONO_LE
-
⊢ ∀x y. exp x ≤ exp y ⇔ x ≤ y
- EXP_MONO_LT
-
⊢ ∀x y. exp x < exp y ⇔ x < y
- EXP_N
-
⊢ ∀n x. exp (&n * x) = exp x pow n
- EXP_NEG
-
⊢ ∀x. exp (-x) = (exp x)⁻¹
- EXP_NEG_MUL
-
⊢ ∀x. exp x * exp (-x) = 1
- EXP_NEG_MUL2
-
⊢ ∀x. exp (-x) * exp x = 1
- EXP_NZ
-
⊢ ∀x. exp x ≠ 0
- EXP_POS_LE
-
⊢ ∀x. 0 ≤ exp x
- EXP_POS_LT
-
⊢ ∀x. 0 < exp x
- EXP_SUB
-
⊢ ∀x y. exp (x − y) = exp x / exp y
- EXP_TOTAL
-
⊢ ∀y. 0 < y ⇒ ∃x. exp x = y
- EXP_TOTAL_LEMMA
-
⊢ ∀y. 1 ≤ y ⇒ ∃x. 0 ≤ x ∧ x ≤ y − 1 ∧ (exp x = y)
- FINE_MIN
-
⊢ ∀g1 g2 D p.
fine (λx. if g1 x < g2 x then g1 x else g2 x) (D,p) ⇒
fine g1 (D,p) ∧ fine g2 (D,p)
- FTC1
-
⊢ ∀f f' a b.
a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ (f diffl f' x) x) ⇒ Dint (a,b) f' (f b − f a)
- GAUGE_MIN
-
⊢ ∀E g1 g2.
gauge E g1 ∧ gauge E g2 ⇒ gauge E (λx. if g1 x < g2 x then g1 x else g2 x)
- GEN_RPOW
-
⊢ ∀a n. 0 < a ⇒ (a pow n = a powr &n)
- INTEGRAL_NULL
-
⊢ ∀f a. Dint (a,a) f 0
- LN_1
-
⊢ ln 1 = 0
- LN_DIV
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln (x / y) = ln x − ln y)
- LN_EXP
-
⊢ ∀x. ln (exp x) = x
- LN_INJ
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ ((ln x = ln y) ⇔ (x = y))
- LN_INV
-
⊢ ∀x. 0 < x ⇒ (ln x⁻¹ = -ln x)
- LN_LE
-
⊢ ∀x. 0 ≤ x ⇒ ln (1 + x) ≤ x
- LN_LT_X
-
⊢ ∀x. 0 < x ⇒ ln x < x
- LN_MONO_LE
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x ≤ ln y ⇔ x ≤ y)
- LN_MONO_LT
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x < ln y ⇔ x < y)
- LN_MUL
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln (x * y) = ln x + ln y)
- LN_POS
-
⊢ ∀x. 1 ≤ x ⇒ 0 ≤ ln x
- LN_POW
-
⊢ ∀n x. 0 < x ⇒ (ln (x pow n) = &n * ln x)
- LN_RPOW
-
⊢ ∀a b. 0 < a ⇒ (ln (a powr b) = b * ln a)
- MCLAURIN
-
⊢ ∀f diff h n.
0 < h ∧ 0 < n ∧ (diff 0 = f) ∧
(∀m t. m < n ∧ 0 ≤ t ∧ t ≤ h ⇒ (diff m diffl diff (SUC m) t) t) ⇒
∃t. 0 < t ∧ t < h ∧
(f h =
sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
diff n t / &FACT n * h pow n)
- MCLAURIN_ALL_LE
-
⊢ ∀f diff.
(diff 0 = f) ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
∀x n. ∃t.
abs t ≤ abs x ∧
(f x =
sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
diff n t / &FACT n * x pow n)
- MCLAURIN_ALL_LT
-
⊢ ∀f diff.
(diff 0 = f) ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
∀x n.
x ≠ 0 ∧ 0 < n ⇒
∃t. 0 < abs t ∧ abs t < abs x ∧
(f x =
sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
diff n t / &FACT n * x pow n)
- MCLAURIN_EXP_LE
-
⊢ ∀x n. ∃t.
abs t ≤ abs x ∧
(exp x = sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n)
- MCLAURIN_EXP_LT
-
⊢ ∀x n.
x ≠ 0 ∧ 0 < n ⇒
∃t. 0 < abs t ∧ abs t < abs x ∧
(exp x = sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n)
- MCLAURIN_NEG
-
⊢ ∀f diff h n.
h < 0 ∧ 0 < n ∧ (diff 0 = f) ∧
(∀m t. m < n ∧ h ≤ t ∧ t ≤ 0 ⇒ (diff m diffl diff (SUC m) t) t) ⇒
∃t. h < t ∧ t < 0 ∧
(f h =
sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
diff n t / &FACT n * h pow n)
- MCLAURIN_ZERO
-
⊢ ∀diff n x.
(x = 0) ∧ 0 < n ⇒
(sum (0,n) (λm. diff m 0 / &FACT m * x pow m) = diff 0 0)
- ONE_RPOW
-
⊢ ∀a. 0 < a ⇒ (1 powr a = 1)
- PI2
-
⊢ pi / 2 = @x. 0 ≤ x ∧ x ≤ 2 ∧ (cos x = 0)
- PI2_BOUNDS
-
⊢ 0 < pi / 2 ∧ pi / 2 < 2
- PI_POS
-
⊢ 0 < pi
- POW_2_SQRT
-
⊢ 0 ≤ x ⇒ (sqrt x² = x)
- POW_ROOT_POS
-
⊢ ∀n x. 0 ≤ x ⇒ (root (SUC n) (x pow SUC n) = x)
- REAL_DIV_SQRT
-
⊢ ∀x. 0 ≤ x ⇒ (x / sqrt x = sqrt x)
- ROOT_0
-
⊢ ∀n. root (SUC n) 0 = 0
- ROOT_1
-
⊢ ∀n. root (SUC n) 1 = 1
- ROOT_DIV
-
⊢ ∀n x y.
0 ≤ x ∧ 0 ≤ y ⇒ (root (SUC n) (x / y) = root (SUC n) x / root (SUC n) y)
- ROOT_INV
-
⊢ ∀n x. 0 ≤ x ⇒ (root (SUC n) x⁻¹ = (root (SUC n) x)⁻¹)
- ROOT_LN
-
⊢ ∀n x. 0 < x ⇒ (root (SUC n) x = exp (ln x / &SUC n))
- ROOT_LT_LEMMA
-
⊢ ∀n x. 0 < x ⇒ (exp (ln x / &SUC n) pow SUC n = x)
- ROOT_MONO_LE
-
⊢ ∀x y. 0 ≤ x ∧ x ≤ y ⇒ root (SUC n) x ≤ root (SUC n) y
- ROOT_MUL
-
⊢ ∀n x y.
0 ≤ x ∧ 0 ≤ y ⇒ (root (SUC n) (x * y) = root (SUC n) x * root (SUC n) y)
- ROOT_POS
-
⊢ ∀n x. 0 ≤ x ⇒ 0 ≤ root (SUC n) x
- ROOT_POS_LT
-
⊢ ∀n x. 0 < x ⇒ 0 < root (SUC n) x
- ROOT_POS_UNIQ
-
⊢ ∀n x y. 0 ≤ x ∧ 0 ≤ y ∧ (y pow SUC n = x) ⇒ (root (SUC n) x = y)
- ROOT_POW_POS
-
⊢ ∀n x. 0 ≤ x ⇒ (root (SUC n) x pow SUC n = x)
- RPOW_0
-
⊢ ∀a. 0 < a ⇒ (a powr 0 = 1)
- RPOW_1
-
⊢ ∀a. 0 < a ⇒ (a powr 1 = a)
- RPOW_ADD
-
⊢ ∀a b c. a powr (b + c) = a powr b * a powr c
- RPOW_ADD_MUL
-
⊢ ∀a b c. a powr (b + c) * a powr -b = a powr c
- RPOW_DIV
-
⊢ ∀a b c. 0 < a ∧ 0 < b ⇒ ((a / b) powr c = a powr c / b powr c)
- RPOW_DIV_BASE
-
⊢ ∀x t. 0 < x ⇒ (x powr t / x = x powr (t − 1))
- RPOW_INV
-
⊢ ∀a b. 0 < a ⇒ (a⁻¹ powr b = (a powr b)⁻¹)
- RPOW_LE
-
⊢ ∀a b c. 1 < a ⇒ (a powr b ≤ a powr c ⇔ b ≤ c)
- RPOW_LT
-
⊢ ∀a b c. 1 < a ⇒ (a powr b < a powr c ⇔ b < c)
- RPOW_MUL
-
⊢ ∀a b c. 0 < a ∧ 0 < b ⇒ ((a * b) powr c = a powr c * b powr c)
- RPOW_NZ
-
⊢ ∀a b. 0 ≠ a ⇒ a powr b ≠ 0
- RPOW_POS_LT
-
⊢ ∀a b. 0 < a ⇒ 0 < a powr b
- RPOW_RPOW
-
⊢ ∀a b c. 0 < a ⇒ ((a powr b) powr c = a powr (b * c))
- RPOW_SUB
-
⊢ ∀a b c. a powr (b − c) = a powr b / a powr c
- RPOW_SUC_N
-
⊢ ∀a n. 0 < a ⇒ (a powr (&n + 1) = a pow SUC n)
- RPOW_UNIQ_BASE
-
⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 ≠ b ∧ (a powr b = c powr b) ⇒ (a = c)
- RPOW_UNIQ_EXP
-
⊢ ∀a b c. 1 < a ∧ 0 < c ∧ 0 < b ∧ (a powr b = a powr c) ⇒ (b = c)
- SIN_0
-
⊢ sin 0 = 0
- SIN_ACS_NZ
-
⊢ ∀x. -1 < x ∧ x < 1 ⇒ sin (acs x) ≠ 0
- SIN_ADD
-
⊢ ∀x y. sin (x + y) = sin x * cos y + cos x * sin y
- SIN_ASN
-
⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ (asn (sin x) = x)
- SIN_BOUND
-
⊢ ∀x. abs (sin x) ≤ 1
- SIN_BOUNDS
-
⊢ ∀x. -1 ≤ sin x ∧ sin x ≤ 1
- SIN_CIRCLE
-
⊢ ∀x. (sin x)² + (cos x)² = 1
- SIN_CONVERGES
-
⊢ ∀x. (λn.
(λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
x pow n) sums sin x
- SIN_COS
-
⊢ ∀x. sin x = cos (pi / 2 − x)
- SIN_COS_ADD
-
⊢ ∀x y.
(sin (x + y) − (sin x * cos y + cos x * sin y))² +
(cos (x + y) − (cos x * cos y − sin x * sin y))² = 0
- SIN_COS_NEG
-
⊢ ∀x. (sin (-x) + sin x)² + (cos (-x) − cos x)² = 0
- SIN_COS_SQ
-
⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ (sin x = sqrt (1 − (cos x)²))
- SIN_COS_SQRT
-
⊢ ∀x. 0 ≤ sin x ⇒ (sin x = sqrt (1 − (cos x)²))
- SIN_DOUBLE
-
⊢ ∀x. sin (2 * x) = 2 * (sin x * cos x)
- SIN_FDIFF
-
⊢ diffs (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) =
(λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0)
- SIN_NEG
-
⊢ ∀x. sin (-x) = -sin x
- SIN_NEGLEMMA
-
⊢ ∀x. -sin x =
suminf
(λn.
-((λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
x pow n))
- SIN_NPI
-
⊢ ∀n. sin (&n * pi) = 0
- SIN_PAIRED
-
⊢ ∀x. (λn. -1 pow n / &FACT (2 * n + 1) * x pow (2 * n + 1)) sums sin x
- SIN_PERIODIC
-
⊢ ∀x. sin (x + 2 * pi) = sin x
- SIN_PERIODIC_PI
-
⊢ ∀x. sin (x + pi) = -sin x
- SIN_PI
-
⊢ sin pi = 0
- SIN_PI2
-
⊢ sin (pi / 2) = 1
- SIN_POS
-
⊢ ∀x. 0 < x ∧ x < 2 ⇒ 0 < sin x
- SIN_POS_PI
-
⊢ ∀x. 0 < x ∧ x < pi ⇒ 0 < sin x
- SIN_POS_PI2
-
⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < sin x
- SIN_POS_PI2_LE
-
⊢ ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ sin x
- SIN_POS_PI_LE
-
⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ 0 ≤ sin x
- SIN_TOTAL
-
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ∧ (sin x = y)
- SIN_ZERO
-
⊢ ∀x. (sin x = 0) ⇔
(∃n. EVEN n ∧ (x = &n * (pi / 2))) ∨ ∃n. EVEN n ∧ (x = -(&n * (pi / 2)))
- SIN_ZERO_LEMMA
-
⊢ ∀x. 0 ≤ x ∧ (sin x = 0) ⇒ ∃n. EVEN n ∧ (x = &n * (pi / 2))
- SQRT_0
-
⊢ sqrt 0 = 0
- SQRT_1
-
⊢ sqrt 1 = 1
- SQRT_DIV
-
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ (sqrt (x / y) = sqrt x / sqrt y)
- SQRT_EQ
-
⊢ ∀x y. (x² = y) ∧ 0 ≤ x ⇒ (x = sqrt y)
- SQRT_EVEN_POW2
-
⊢ ∀n. EVEN n ⇒ (sqrt (2 pow n) = 2 pow (n DIV 2))
- SQRT_INV
-
⊢ ∀x. 0 ≤ x ⇒ (sqrt x⁻¹ = (sqrt x)⁻¹)
- SQRT_MONO_LE
-
⊢ ∀x y. 0 ≤ x ∧ x ≤ y ⇒ sqrt x ≤ sqrt y
- SQRT_MUL
-
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ (sqrt (x * y) = sqrt x * sqrt y)
- SQRT_POS_LE
-
⊢ ∀x. 0 ≤ x ⇒ 0 ≤ sqrt x
- SQRT_POS_LT
-
⊢ ∀x. 0 < x ⇒ 0 < sqrt x
- SQRT_POS_UNIQ
-
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ∧ (y² = x) ⇒ (sqrt x = y)
- SQRT_POW2
-
⊢ ∀x. ((sqrt x)² = x) ⇔ 0 ≤ x
- SQRT_POW_2
-
⊢ ∀x. 0 ≤ x ⇒ ((sqrt x)² = x)
- TAN_0
-
⊢ tan 0 = 0
- TAN_ADD
-
⊢ ∀x y.
cos x ≠ 0 ∧ cos y ≠ 0 ∧ cos (x + y) ≠ 0 ⇒
(tan (x + y) = (tan x + tan y) / (1 − tan x * tan y))
- TAN_ATN
-
⊢ ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ (atn (tan x) = x)
- TAN_DOUBLE
-
⊢ ∀x. cos x ≠ 0 ∧ cos (2 * x) ≠ 0 ⇒ (tan (2 * x) = 2 * tan x / (1 − (tan x)²))
- TAN_NEG
-
⊢ ∀x. tan (-x) = -tan x
- TAN_NPI
-
⊢ ∀n. tan (&n * pi) = 0
- TAN_PERIODIC
-
⊢ ∀x. tan (x + 2 * pi) = tan x
- TAN_PI
-
⊢ tan pi = 0
- TAN_POS_PI2
-
⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < tan x
- TAN_SEC
-
⊢ ∀x. cos x ≠ 0 ⇒ (1 + (tan x)² = (cos x)⁻¹ ²)
- TAN_TOTAL
-
⊢ ∀y. ∃!x. -(pi / 2) < x ∧ x < pi / 2 ∧ (tan x = y)
- TAN_TOTAL_LEMMA
-
⊢ ∀y. 0 < y ⇒ ∃x. 0 < x ∧ x < pi / 2 ∧ y < tan x
- TAN_TOTAL_POS
-
⊢ ∀y. 0 ≤ y ⇒ ∃x. 0 ≤ x ∧ x < pi / 2 ∧ (tan x = y)