SKOLEM_CONV
Conv.SKOLEM_CONV : conv
Proves the existence of a Skolem function.
When applied to an argument of the form !x1...xn. ?y. P
,
the conversion SKOLEM_CONV
returns the theorem:
|- (!x1...xn. ?y. P) = (?y'. !x1...xn. P[y' x1 ... xn/y])
where y'
is a primed variant of y
not free
in the input term.
SKOLEM_CONV tm
fails if tm
is not a term of
the form !x1...xn. ?y. P
.