LEFT_IMP_PEXISTS_CONVPairRules.LEFT_IMP_PEXISTS_CONV : conv
Moves a paired existential quantification of the antecedent outwards through an implication.
When applied to a term of the form (?p. t) ==> u, the
conversion LEFT_IMP_PEXISTS_CONV returns the theorem:
|- (?p. t) ==> u = (!p'. t[p'/p] ==> u)
where p' is a primed variant of the pair p
that does not contain any variables that appear free in the input
term.
Fails if applied to a term not of the form
(?p. t) ==> u.
Conv.LEFT_IMP_EXISTS_CONV,
PairRules.PFORALL_IMP_CONV,
PairRules.RIGHT_IMP_PFORALL_CONV