RIGHT_AND_PEXISTS_CONV

PairRules.RIGHT_AND_PEXISTS_CONV : conv

Moves a paired existential quantification of the right conjunct outwards through a conjunction.

When applied to a term of the form t /\ (?p. t), the conversion RIGHT_AND_PEXISTS_CONV returns the theorem:

   |- t /\ (?p. u) = (?p'. t /\ (u[p'/p]))

where p' is a primed variant of the pair p that does not contain any variables free in the input term.

Failure

Fails if applied to a term not of the form t /\ (?p. u).

See also

Conv.RIGHT_AND_EXISTS_CONV, PairRules.AND_PEXISTS_CONV, PairRules.PEXISTS_AND_CONV, PairRules.LEFT_AND_PEXISTS_CONV