Structure basis_emitTheory
signature basis_emitTheory =
sig
type thm = Thm.thm
(* Axioms *)
val EXPi : thm
val MULi : thm
val SUMi : thm
val dimindexi : thm
(* Definitions *)
val FCPi_def_primitive : thm
val IS_EMPTY_def : thm
val i2w_itself_def_primitive : thm
val mk_fcp_def : thm
val neg_int_of_num_def : thm
(* Theorems *)
val FCPi_def : thm
val FCPi_ind : thm
val IS_EMPTY_REWRITE : thm
val i2w_itself_def : thm
val i2w_itself_ind : thm
(*
[finite_map] Parent theory of "basis_emit"
[integer_word] Parent theory of "basis_emit"
[pre_emit] Parent theory of "basis_emit"
[EXPi] Axiom
[oracles: ] [axioms: EXPi] []
⊢ EXPi (ITSELF a,ITSELF b) = ITSELF (a ** b)
[MULi] Axiom
[oracles: ] [axioms: MULi] []
⊢ MULi (ITSELF a,ITSELF b) = ITSELF (a * b)
[SUMi] Axiom
[oracles: ] [axioms: SUMi] []
⊢ SUMi (ITSELF a,ITSELF b) = ITSELF (a + b)
[dimindexi] Axiom
[oracles: ] [axioms: dimindexi] [] ⊢ dimindex (ITSELF a) = a
[FCPi_def_primitive] Definition
⊢ FCPi = WFREC (@R. WF R) (λFCPi a. case a of (v,v1) => I ($FCP v))
[IS_EMPTY_def] Definition
⊢ ∀s. IS_EMPTY s ⇔ if s = ∅ then T else F
[i2w_itself_def_primitive] Definition
⊢ i2w_itself =
WFREC (@R. WF R) (λi2w_itself a. case a of (v,v1) => I (i2w v))
[mk_fcp_def] Definition
⊢ mk_fcp = FCPi
[neg_int_of_num_def] Definition
⊢ ∀n. neg_int_of_num n = -int_of_num (n + 1)
[FCPi_def] Theorem
⊢ FCPi (f,(:β)) = $FCP f
[FCPi_ind] Theorem
⊢ ∀P. (∀f. P (f,(:β))) ⇒ ∀v v1. P (v,v1)
[IS_EMPTY_REWRITE] Theorem
⊢ (s = ∅ ⇔ IS_EMPTY s) ∧ (∅ = s ⇔ IS_EMPTY s)
[i2w_itself_def] Theorem
⊢ i2w_itself (i,(:α)) = i2w i
[i2w_itself_ind] Theorem
⊢ ∀P. (∀i. P (i,(:α))) ⇒ ∀v v1. P (v,v1)
*)
end
HOL 4, Trindemossen-2