Structure countable_typesTheory
signature countable_typesTheory =
sig
type thm = Thm.thm
(* Theorems *)
val countable_split : thm
val list_countable : thm
val unit_countable : thm
(*
[hol] Parent theory of "countable_types"
[countable_split] Theorem
⊢ ∀X f m.
INJ f X 𝕌(:num list # α list) ∧
(∀x y. x ∈ X ∧ MEM y (SND (f x)) ⇒ y ∈ X ∧ m y < m x) ⇒
countable X
[list_countable] Theorem
⊢ countable Lset ⇔ countable (BIGUNION (IMAGE set Lset))
[unit_countable] Theorem
⊢ countable 𝕌(:unit)
*)
end
HOL 4, Trindemossen-2