Structure logrootTheory
signature logrootTheory =
sig
type thm = Thm.thm
(* Definitions *)
val LOG : thm
val ROOT : thm
val SQRTd_def : thm
val iSQRT0_def : thm
val iSQRT1_def : thm
val iSQRT2_def : thm
val iSQRT3_def : thm
(* Theorems *)
val EXP_EQ_SELF : thm
val EXP_LCANCEL : thm
val EXP_LE : thm
val EXP_LE_ISO : thm
val EXP_LE_LOG_SIMP : thm
val EXP_LT : thm
val EXP_LT_ISO : thm
val EXP_LT_LOG_SIMP : thm
val EXP_MUL : thm
val EXP_RCANCEL : thm
val EXP_TO_LOG : thm
val LE_EXP_ISO : thm
val LE_EXP_LOG_SIMP : thm
val LOG2_1 : thm
val LOG2_2 : thm
val LOG2_2_EXP : thm
val LOG2_EQ_0 : thm
val LOG2_EQ_1 : thm
val LOG2_EQ_SELF : thm
val LOG2_EXACT_EXP : thm
val LOG2_LE : thm
val LOG2_LE_MONO : thm
val LOG2_LT : thm
val LOG2_LT_SELF : thm
val LOG2_MULT_EXP : thm
val LOG2_NEQ_SELF : thm
val LOG2_POS : thm
val LOG2_PROPERTY : thm
val LOG2_SUC_SQ : thm
val LOG2_SUC_TWICE_SQ : thm
val LOG2_THM : thm
val LOG2_TWICE : thm
val LOG2_TWICE_LT : thm
val LOG2_TWICE_SQ : thm
val LOG2_UNIQUE : thm
val LOG_1 : thm
val LOG_ADD : thm
val LOG_ADD1 : thm
val LOG_BASE : thm
val LOG_DIV : thm
val LOG_EQ_0 : thm
val LOG_EVAL : thm
val LOG_EXACT_EXP : thm
val LOG_EXP : thm
val LOG_LE_MONO : thm
val LOG_LE_REVERSE : thm
val LOG_MOD : thm
val LOG_MULT : thm
val LOG_NUMERAL : thm
val LOG_POW : thm
val LOG_POWER : thm
val LOG_ROOT : thm
val LOG_RWT : thm
val LOG_TEST : thm
val LOG_THM : thm
val LOG_UNIQUE : thm
val LOG_add_digit : thm
val LOG_exists : thm
val LT_EXP_ISO : thm
val LT_EXP_LOG : thm
val LT_EXP_LOG_SIMP : thm
val LT_SQRT_IMP : thm
val ONE_LE_EXP : thm
val ROOT_1 : thm
val ROOT_COMPUTE : thm
val ROOT_DIV : thm
val ROOT_EQ_0 : thm
val ROOT_EQ_1 : thm
val ROOT_EQ_SELF : thm
val ROOT_EVAL : thm
val ROOT_EXP : thm
val ROOT_FROM_POWER : thm
val ROOT_GE_SELF : thm
val ROOT_LE_MONO : thm
val ROOT_LE_REVERSE : thm
val ROOT_LE_SELF : thm
val ROOT_OF_0 : thm
val ROOT_OF_1 : thm
val ROOT_POWER : thm
val ROOT_SUC : thm
val ROOT_THM : thm
val ROOT_UNIQUE : thm
val ROOT_exists : thm
val SQRT_0 : thm
val SQRT_1 : thm
val SQRT_EQ_0 : thm
val SQRT_EQ_1 : thm
val SQRT_EQ_SELF : thm
val SQRT_EXP_2 : thm
val SQRT_GE_SELF : thm
val SQRT_LE : thm
val SQRT_LT : thm
val SQRT_LT_IMP : thm
val SQRT_LT_SQRT : thm
val SQRT_OF_SQ : thm
val SQRT_PROPERTY : thm
val SQRT_THM : thm
val SQRT_UNIQUE : thm
val TWO_EXP_LOG2_LE : thm
val numeral_root2 : thm
val numeral_sqrt : thm
(*
[basicSize] Parent theory of "logroot"
[cv] Parent theory of "logroot"
[reduce] Parent theory of "logroot"
[while] Parent theory of "logroot"
[LOG] Definition
⊢ ∀a n. 1 < a ∧ 0 < n ⇒ a ** LOG a n ≤ n ∧ n < a ** SUC (LOG a n)
[ROOT] Definition
⊢ ∀r n. 0 < r ⇒ ROOT r n ** r ≤ n ∧ n < SUC (ROOT r n) ** r
[SQRTd_def] Definition
⊢ ∀n. SQRTd n = (SQRT n,n − SQRT n * SQRT n)
[iSQRT0_def] Definition
⊢ ∀n. iSQRT0 n =
(let
p = SQRTd n;
d = SND p − FST p
in
if d = 0 then (2 * FST p,4 * SND p)
else (SUC (2 * FST p),4 * d − 1))
[iSQRT1_def] Definition
⊢ ∀n. iSQRT1 n =
(let
p = SQRTd n;
d = SUC (SND p) − FST p
in
if d = 0 then (2 * FST p,SUC (4 * SND p))
else (SUC (2 * FST p),4 * (d − 1)))
[iSQRT2_def] Definition
⊢ ∀n. iSQRT2 n =
(let
p = SQRTd n;
d = 2 * FST p;
c = SUC (2 * SND p);
e = c − d
in
if e = 0 then (d,2 * c) else (SUC d,2 * e − 1))
[iSQRT3_def] Definition
⊢ ∀n. iSQRT3 n =
(let
p = SQRTd n;
d = 2 * FST p;
c = SUC (2 * SND p);
e = SUC c − d
in
if e = 0 then (d,SUC (2 * c)) else (SUC d,2 * (e − 1)))
[EXP_EQ_SELF] Theorem
⊢ ∀n m. 0 < m ⇒ (n ** m = n ⇔ m = 1 ∨ n = 0 ∨ n = 1)
[EXP_LCANCEL] Theorem
⊢ ∀a b c n m.
0 < a ∧ n < m ∧ a ** n * b = a ** m * c ⇒
∃d. 0 < d ∧ b = a ** d * c
[EXP_LE] Theorem
⊢ ∀n b. 0 < n ⇒ b ≤ b ** n
[EXP_LE_ISO] Theorem
⊢ ∀a b r. 0 < r ⇒ (a ≤ b ⇔ a ** r ≤ b ** r)
[EXP_LE_LOG_SIMP] Theorem
⊢ (<..num comp'n..> ** e ≤ <..num comp'n..> ⇔
<..num comp'n..> < 2 ∨ e ≤ LOG <..num comp'n..> <..num comp'n..> ) ∧
(<..num comp'n..> ** e ≤ <..num comp'n..> ⇔
<..num comp'n..> < 2 ∨ e ≤ LOG <..num comp'n..> <..num comp'n..> )
[EXP_LT] Theorem
⊢ ∀n b. 1 < b ∧ 1 < n ⇒ b < b ** n
[EXP_LT_ISO] Theorem
⊢ ∀a b r. 0 < r ⇒ (a < b ⇔ a ** r < b ** r)
[EXP_LT_LOG_SIMP] Theorem
⊢ (<..num comp'n..> ** e < <..num comp'n..> ⇔
<..num comp'n..> < 2 ∨
e ≤ LOG <..num comp'n..> (<..num comp'n..> − 1)) ∧
(<..num comp'n..> ** e < <..num comp'n..> ⇔
<..num comp'n..> < 2 ∨
e ≤ LOG <..num comp'n..> (<..num comp'n..> − 1)) ∧
(<..num comp'n..> ** e < <..num comp'n..> ⇔
<..num comp'n..> < 2 ∨
e ≤ LOG <..num comp'n..> (<..num comp'n..> − 1))
[EXP_MUL] Theorem
⊢ ∀a b c. (a ** b) ** c = a ** (b * c)
[EXP_RCANCEL] Theorem
⊢ ∀a b c n m.
0 < a ∧ n < m ∧ b * a ** n = c * a ** m ⇒
∃d. 0 < d ∧ b = c * a ** d
[EXP_TO_LOG] Theorem
⊢ ∀a b n. 1 < a ∧ 0 < b ∧ b ≤ a ** n ⇒ LOG a b ≤ n
[LE_EXP_ISO] Theorem
⊢ ∀e a b. 1 < e ⇒ (a ≤ b ⇔ e ** a ≤ e ** b)
[LE_EXP_LOG_SIMP] Theorem
⊢ (<..num comp'n..> ≤ <..num comp'n..> ** e ⇔
2 ≤ <..num comp'n..> ∧
LOG <..num comp'n..> (<..num comp'n..> − 1) < e) ∧
(<..num comp'n..> ≤ <..num comp'n..> ** e ⇔
2 ≤ <..num comp'n..> ∧
LOG <..num comp'n..> (<..num comp'n..> − 1) < e) ∧
(<..num comp'n..> ≤ <..num comp'n..> ** e ⇔
2 ≤ <..num comp'n..> ∧
LOG <..num comp'n..> (<..num comp'n..> − 1) < e)
[LOG2_1] Theorem
⊢ LOG2 1 = 0
[LOG2_2] Theorem
⊢ LOG2 2 = 1
[LOG2_2_EXP] Theorem
⊢ ∀n. LOG2 (2 ** n) = n
[LOG2_EQ_0] Theorem
⊢ ∀n. 0 < n ⇒ (LOG2 n = 0 ⇔ n = 1)
[LOG2_EQ_1] Theorem
⊢ ∀n. 0 < n ⇒ (LOG2 n = 1 ⇔ n = 2 ∨ n = 3)
[LOG2_EQ_SELF] Theorem
⊢ ∀n. LOG2 n = n ⇒ n = 0
[LOG2_EXACT_EXP] Theorem
⊢ ∀n. 2 ** LOG2 n = n ⇔ ∃k. n = 2 ** k
[LOG2_LE] Theorem
⊢ ∀n m. 0 < n ∧ n ≤ m ⇒ LOG2 n ≤ LOG2 m
[LOG2_LE_MONO] Theorem
⊢ ∀n m. 0 < n ⇒ n ≤ m ⇒ LOG2 n ≤ LOG2 m
[LOG2_LT] Theorem
⊢ ∀n m. 0 < n ∧ n < m ⇒ LOG2 n ≤ LOG2 m
[LOG2_LT_SELF] Theorem
⊢ ∀n. 0 < n ⇒ LOG2 n < n
[LOG2_MULT_EXP] Theorem
⊢ ∀n m. 0 < n ⇒ LOG2 (n * 2 ** m) = LOG2 n + m
[LOG2_NEQ_SELF] Theorem
⊢ ∀n. 0 < n ⇒ LOG2 n ≠ n
[LOG2_POS] Theorem
⊢ ∀n. 1 < n ⇒ 0 < LOG2 n
[LOG2_PROPERTY] Theorem
⊢ ∀n. 0 < n ⇒ 2 ** LOG2 n ≤ n ∧ n < 2 ** SUC (LOG2 n)
[LOG2_SUC_SQ] Theorem
⊢ ∀n. 1 < n ⇒ 1 < (SUC (LOG2 n))²
[LOG2_SUC_TWICE_SQ] Theorem
⊢ ∀n. 0 < n ⇒ 4 ≤ (2 * SUC (LOG2 n))²
[LOG2_THM] Theorem
⊢ ∀n. 0 < n ⇒ ∀p. LOG2 n = p ⇔ 2 ** p ≤ n ∧ n < 2 ** SUC p
[LOG2_TWICE] Theorem
⊢ ∀n. 0 < n ⇒ LOG2 (2 * n) = 1 + LOG2 n
[LOG2_TWICE_LT] Theorem
⊢ ∀n. 1 < n ⇒ 1 < 2 * LOG2 n
[LOG2_TWICE_SQ] Theorem
⊢ ∀n. 1 < n ⇒ 4 ≤ (2 * LOG2 n)²
[LOG2_UNIQUE] Theorem
⊢ ∀n m. 2 ** m ≤ n ∧ n < 2 ** SUC m ⇒ LOG2 n = m
[LOG_1] Theorem
⊢ ∀a. 1 < a ⇒ LOG a 1 = 0
[LOG_ADD] Theorem
⊢ ∀a b c. 1 < a ∧ b < a ** c ⇒ LOG a (b + a ** c) = c
[LOG_ADD1] Theorem
⊢ ∀n a b.
0 < n ∧ 1 < a ∧ 0 < b ⇒
LOG a (a ** SUC n * b) = SUC (LOG a (a ** n * b))
[LOG_BASE] Theorem
⊢ ∀a. 1 < a ⇒ LOG a a = 1
[LOG_DIV] Theorem
⊢ ∀a x. 1 < a ∧ a ≤ x ⇒ LOG a x = 1 + LOG a (x DIV a)
[LOG_EQ_0] Theorem
⊢ ∀a b. 1 < a ∧ 0 < b ⇒ (LOG a b = 0 ⇔ b < a)
[LOG_EVAL] Theorem
⊢ ∀m n.
LOG m n =
if m ≤ 1 ∨ n = 0 then LOG m n
else if n < m then 0
else SUC (LOG m (n DIV m))
[LOG_EXACT_EXP] Theorem
⊢ ∀a. 1 < a ⇒ ∀n. LOG a (a ** n) = n
[LOG_EXP] Theorem
⊢ ∀n a b. 1 < a ∧ 0 < b ⇒ LOG a (a ** n * b) = n + LOG a b
[LOG_LE_MONO] Theorem
⊢ ∀a x y. 1 < a ∧ 0 < x ⇒ x ≤ y ⇒ LOG a x ≤ LOG a y
[LOG_LE_REVERSE] Theorem
⊢ ∀a b n. 1 < a ∧ 0 < n ∧ a ≤ b ⇒ LOG b n ≤ LOG a n
[LOG_MOD] Theorem
⊢ ∀n. 0 < n ⇒ n = 2 ** LOG2 n + n MOD 2 ** LOG2 n
[LOG_MULT] Theorem
⊢ ∀b x. 1 < b ∧ 0 < x ⇒ LOG b (b * x) = SUC (LOG b x)
[LOG_NUMERAL] Theorem
⊢ LOG <..num comp'n..> <..num comp'n..> =
(if <..num comp'n..> < <..num comp'n..> then 0
else
LOG <..num comp'n..> (<..num comp'n..> DIV <..num comp'n..> ) +
1) ∧
LOG <..num comp'n..> <..num comp'n..> =
(if <..num comp'n..> < <..num comp'n..> then 0
else
LOG <..num comp'n..> (<..num comp'n..> DIV <..num comp'n..> ) +
1) ∧
LOG <..num comp'n..> <..num comp'n..> =
(if <..num comp'n..> < <..num comp'n..> then 0
else
LOG <..num comp'n..> (<..num comp'n..> DIV <..num comp'n..> ) +
1) ∧
LOG <..num comp'n..> <..num comp'n..> =
(if <..num comp'n..> < <..num comp'n..> then 0
else
LOG <..num comp'n..> (<..num comp'n..> DIV <..num comp'n..> ) +
1) ∧
LOG <..num comp'n..> <..num comp'n..> =
(if <..num comp'n..> < <..num comp'n..> then 0
else
LOG <..num comp'n..> (<..num comp'n..> DIV <..num comp'n..> ) +
1) ∧
LOG <..num comp'n..> <..num comp'n..> =
if <..num comp'n..> < <..num comp'n..> then 0
else
LOG <..num comp'n..> (<..num comp'n..> DIV <..num comp'n..> ) + 1
[LOG_POW] Theorem
⊢ ∀b n. 1 < b ⇒ LOG b (b ** n) = n
[LOG_POWER] Theorem
⊢ ∀b x n.
1 < b ∧ 0 < x ∧ 0 < n ⇒
n * LOG b x ≤ LOG b (x ** n) ∧ LOG b (x ** n) < n * SUC (LOG b x)
[LOG_ROOT] Theorem
⊢ ∀a x r. 1 < a ∧ 0 < x ∧ 0 < r ⇒ LOG a (ROOT r x) = LOG a x DIV r
[LOG_RWT] Theorem
⊢ ∀m n.
1 < m ∧ 0 < n ⇒
LOG m n = if n < m then 0 else SUC (LOG m (n DIV m))
[LOG_TEST] Theorem
⊢ ∀a n.
1 < a ∧ 0 < n ⇒
∀p. LOG a n = p ⇔ SUC n ≤ a ** SUC p ∧ a ** SUC p ≤ a * n
[LOG_THM] Theorem
⊢ ∀a n. 1 < a ∧ 0 < n ⇒ ∀p. LOG a n = p ⇔ a ** p ≤ n ∧ n < a ** SUC p
[LOG_UNIQUE] Theorem
⊢ ∀a n p. a ** p ≤ n ∧ n < a ** SUC p ⇒ LOG a n = p
[LOG_add_digit] Theorem
⊢ ∀b x y. 1 < b ∧ 0 < y ∧ x < b ⇒ LOG b (b * y + x) = SUC (LOG b y)
[LOG_exists] Theorem
⊢ ∃f. ∀a n. 1 < a ∧ 0 < n ⇒ a ** f a n ≤ n ∧ n < a ** SUC (f a n)
[LT_EXP_ISO] Theorem
⊢ ∀e a b. 1 < e ⇒ (a < b ⇔ e ** a < e ** b)
[LT_EXP_LOG] Theorem
⊢ x < b ** e ⇔
b = 0 ∧ e = 0 ∧ x = 0 ∨ b = 1 ∧ x = 0 ∨
2 ≤ b ∧ (LOG b x < e ∨ x = 0)
[LT_EXP_LOG_SIMP] Theorem
⊢ (<..num comp'n..> < <..num comp'n..> ** e ⇔
2 ≤ <..num comp'n..> ∧ LOG <..num comp'n..> <..num comp'n..> < e) ∧
(<..num comp'n..> < <..num comp'n..> ** e ⇔
2 ≤ <..num comp'n..> ∧ LOG <..num comp'n..> <..num comp'n..> < e)
[LT_SQRT_IMP] Theorem
⊢ ∀n m. n < SQRT m ⇒ n² < m
[ONE_LE_EXP] Theorem
⊢ ∀m n. 0 < m ⇒ 1 ≤ m ** n
[ROOT_1] Theorem
⊢ ∀n. ROOT 1 n = n
[ROOT_COMPUTE] Theorem
⊢ ∀r n.
0 < r ⇒
ROOT r 0 = 0 ∧
ROOT r n =
(let
x = 2 * ROOT r (n DIV 2 ** r)
in
if n < SUC x ** r then x else SUC x)
[ROOT_DIV] Theorem
⊢ ∀r x y. 0 < r ∧ 0 < y ⇒ ROOT r x DIV y = ROOT r (x DIV y ** r)
[ROOT_EQ_0] Theorem
⊢ ∀m. 0 < m ⇒ ∀n. ROOT m n = 0 ⇔ n = 0
[ROOT_EQ_1] Theorem
⊢ ∀m. 0 < m ⇒ ∀n. ROOT m n = 1 ⇔ 0 < n ∧ n < 2 ** m
[ROOT_EQ_SELF] Theorem
⊢ ∀m n. 0 < m ⇒ (ROOT m n = n ⇔ m = 1 ∨ n = 0 ∨ n = 1)
[ROOT_EVAL] Theorem
⊢ ∀r n.
ROOT r n =
if r = 0 then ROOT 0 n
else if n = 0 then 0
else
(let
m = 2 * ROOT r (n DIV 2 ** r)
in
m + if SUC m ** r ≤ n then 1 else 0)
[ROOT_EXP] Theorem
⊢ ∀n r. 0 < r ⇒ ROOT r (n ** r) = n
[ROOT_FROM_POWER] Theorem
⊢ ∀m n b. 0 < m ∧ b ** m = n ⇒ b = ROOT m n
[ROOT_GE_SELF] Theorem
⊢ ∀m n. 0 < m ⇒ (n ≤ ROOT m n ⇔ m = 1 ∨ n = 0 ∨ n = 1)
[ROOT_LE_MONO] Theorem
⊢ ∀r x y. 0 < r ⇒ x ≤ y ⇒ ROOT r x ≤ ROOT r y
[ROOT_LE_REVERSE] Theorem
⊢ ∀a b n. 0 < a ∧ a ≤ b ⇒ ROOT b n ≤ ROOT a n
[ROOT_LE_SELF] Theorem
⊢ ∀m n. 0 < m ⇒ ROOT m n ≤ n
[ROOT_OF_0] Theorem
⊢ ∀m. 0 < m ⇒ ROOT m 0 = 0
[ROOT_OF_1] Theorem
⊢ ∀m. 0 < m ⇒ ROOT m 1 = 1
[ROOT_POWER] Theorem
⊢ ∀a n. 1 < a ∧ 0 < n ⇒ ROOT n (a ** n) = a
[ROOT_SUC] Theorem
⊢ ∀r n.
0 < r ⇒
ROOT r (SUC n) =
ROOT r n + if SUC n = SUC (ROOT r n) ** r then 1 else 0
[ROOT_THM] Theorem
⊢ ∀r. 0 < r ⇒ ∀n p. ROOT r n = p ⇔ p ** r ≤ n ∧ n < SUC p ** r
[ROOT_UNIQUE] Theorem
⊢ ∀r n p. p ** r ≤ n ∧ n < SUC p ** r ⇒ ROOT r n = p
[ROOT_exists] Theorem
⊢ ∀r n. 0 < r ⇒ ∃rt. rt ** r ≤ n ∧ n < SUC rt ** r
[SQRT_0] Theorem
⊢ SQRT 0 = 0
[SQRT_1] Theorem
⊢ SQRT 1 = 1
[SQRT_EQ_0] Theorem
⊢ ∀n. SQRT n = 0 ⇔ n = 0
[SQRT_EQ_1] Theorem
⊢ ∀n. SQRT n = 1 ⇔ n = 1 ∨ n = 2 ∨ n = 3
[SQRT_EQ_SELF] Theorem
⊢ ∀n. SQRT n = n ⇔ n = 0 ∨ n = 1
[SQRT_EXP_2] Theorem
⊢ ∀n. SQRT n² = n
[SQRT_GE_SELF] Theorem
⊢ ∀n. n ≤ SQRT n ⇔ n = 0 ∨ n = 1
[SQRT_LE] Theorem
⊢ ∀n m. n ≤ m ⇒ SQRT n ≤ SQRT m
[SQRT_LT] Theorem
⊢ ∀n m. n < m ⇒ SQRT n ≤ SQRT m
[SQRT_LT_IMP] Theorem
⊢ ∀n m. SQRT n < m ⇒ n < m²
[SQRT_LT_SQRT] Theorem
⊢ ∀n m. SQRT n < SQRT m ⇒ n < m
[SQRT_OF_SQ] Theorem
⊢ ∀n. SQRT n² = n
[SQRT_PROPERTY] Theorem
⊢ ∀n. (SQRT n)² ≤ n ∧ n < (SUC (SQRT n))²
[SQRT_THM] Theorem
⊢ ∀n p. SQRT n = p ⇔ p² ≤ n ∧ n < (SUC p)²
[SQRT_UNIQUE] Theorem
⊢ ∀n p. p² ≤ n ∧ n < (SUC p)² ⇒ SQRT n = p
[TWO_EXP_LOG2_LE] Theorem
⊢ ∀n. 0 < n ⇒ 2 ** LOG2 n ≤ n
[numeral_root2] Theorem
⊢ SQRT <..num comp'n..> = FST (SQRTd n)
[numeral_sqrt] Theorem
⊢ SQRTd ZERO = (0,0) ∧ SQRTd <..num comp'n..> = (1,0) ∧
SQRTd <..num comp'n..> = (1,1) ∧
SQRTd <..num comp'n..> = iSQRT3 n ∧
SQRTd <..num comp'n..> = iSQRT0 (SUC n) ∧
SQRTd <..num comp'n..> = iSQRT1 (SUC n) ∧
SQRTd <..num comp'n..> = iSQRT2 (SUC n) ∧
SQRTd (SUC <..num comp'n..> ) = iSQRT0 (SUC n) ∧
SQRTd (SUC <..num comp'n..> ) = iSQRT1 (SUC n) ∧
SQRTd (SUC <..num comp'n..> ) = iSQRT2 (SUC n) ∧
SQRTd (SUC <..num comp'n..> ) = iSQRT3 (SUC n)
*)
end
HOL 4, Trindemossen-2