Structure pre_emitTheory
signature pre_emitTheory =
sig
type thm = Thm.thm
(* Definitions *)
val fromNum_def_primitive : thm
val sw2sw_itself_def : thm
val w2w_itself_def : thm
val word_concat_itself_def : thm
val word_eq_def : thm
val word_extract_itself_def : thm
val word_index_def : thm
(* Theorems *)
val fromNum_def : thm
val fromNum_ind : thm
(*
[words] Parent theory of "pre_emit"
[fromNum_def_primitive] Definition
⊢ fromNum =
WFREC (@R. WF R)
(λfromNum a.
case a of (v,v1) => I (n2w_itself (v MOD dimword (:α),(:α))))
[sw2sw_itself_def] Definition
⊢ ∀w. sw2sw_itself (:α) w = sw2sw w
[w2w_itself_def] Definition
⊢ ∀w. w2w_itself (:α) w = w2w w
[word_concat_itself_def] Definition
⊢ ∀v w. word_concat_itself (:α) v w = v @@ w
[word_eq_def] Definition
⊢ ∀v w. word_eq v w ⇔ v = w
[word_extract_itself_def] Definition
⊢ ∀h l w. word_extract_itself (:α) h l w = (h >< l) w
[word_index_def] Definition
⊢ ∀w n. word_index w n ⇔ w ' n
[fromNum_def] Theorem
⊢ fromNum (n,(:α)) = n2w_itself (n MOD dimword (:α),(:α))
[fromNum_ind] Theorem
⊢ ∀P. (∀n. P (n,(:α))) ⇒ ∀v v1. P (v,v1)
*)
end
HOL 4, Trindemossen-2