Structure pre_emitTheory


Source File Identifier index Theory binding index

signature pre_emitTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val fromNum_def_primitive : thm
    val sw2sw_itself_def : thm
    val w2w_itself_def : thm
    val word_concat_itself_def : thm
    val word_eq_def : thm
    val word_extract_itself_def : thm
    val word_index_def : thm
  
  (*  Theorems  *)
    val fromNum_def : thm
    val fromNum_ind : thm
(*
   [words] Parent theory of "pre_emit"
   
   [fromNum_def_primitive]  Definition
      
      ⊢ fromNum =
        WFREC (@R. WF R)
          (λfromNum a.
               case a of (v,v1) => I (n2w_itself (v MOD dimword (:α),(:α))))
   
   [sw2sw_itself_def]  Definition
      
      ⊢ ∀w. sw2sw_itself (:α) w = sw2sw w
   
   [w2w_itself_def]  Definition
      
      ⊢ ∀w. w2w_itself (:α) w = w2w w
   
   [word_concat_itself_def]  Definition
      
      ⊢ ∀v w. word_concat_itself (:α) v w = v @@ w
   
   [word_eq_def]  Definition
      
      ⊢ ∀v w. word_eq v w ⇔ v = w
   
   [word_extract_itself_def]  Definition
      
      ⊢ ∀h l w. word_extract_itself (:α) h l w = (h >< l) w
   
   [word_index_def]  Definition
      
      ⊢ ∀w n. word_index w n ⇔ w ' n
   
   [fromNum_def]  Theorem
      
      ⊢ fromNum (n,(:α)) = n2w_itself (n MOD dimword (:α),(:α))
   
   [fromNum_ind]  Theorem
      
      ⊢ ∀P. (∀n. P (n,(:α))) ⇒ ∀v v1. P (v,v1)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-2