Structure real_algebraTheory
signature real_algebraTheory =
sig
type thm = Thm.thm
(* Definitions *)
val Reals_def : thm
val real_add_monoid_def : thm
val real_mul_monoid_def : thm
(* Theorems *)
val GBAG_Reals_prod_BAG_OF_SET : thm
val GBAG_Reals_sum_BAG_IMAGE_BAG_OF_SET : thm
val Inv_Reals : thm
val Reals_sum_inv : thm
val RingReals : thm
val Unit_Reals : thm
val real_add_group : thm
val real_add_monoid : thm
val real_add_monoid_simps : thm
val real_mul_group : thm
val real_mul_monoid : thm
val real_mul_monoid_simps : thm
val ring_divides_Reals : thm
val ring_prime_Reals : thm
(*
[real_sigma] Parent theory of "real_algebra"
[ring] Parent theory of "real_algebra"
[Reals_def] Definition
⊢ Reals =
<|carrier := 𝕌(:real); sum := real_add_monoid;
prod := real_mul_monoid|>
[real_add_monoid_def] Definition
⊢ real_add_monoid = <|carrier := 𝕌(:real); id := 0; op := $+ |>
[real_mul_monoid_def] Definition
⊢ real_mul_monoid = <|carrier := 𝕌(:real); id := 1; op := $* |>
[GBAG_Reals_prod_BAG_OF_SET] Theorem
⊢ ∀f s.
FINITE s ⇒
GBAG Reals.prod (BAG_IMAGE f (BAG_OF_SET s)) = product s f
[GBAG_Reals_sum_BAG_IMAGE_BAG_OF_SET] Theorem
⊢ ∀f s.
FINITE s ⇒
GBAG Reals.sum (BAG_IMAGE f (BAG_OF_SET s)) = SIGMA f s
[Inv_Reals] Theorem
⊢ r ≠ 0 ⇒ Inv Reals r = r⁻¹
[Reals_sum_inv] Theorem
⊢ Reals.sum.inv = numeric_negate
[RingReals] Theorem
⊢ Ring Reals
[Unit_Reals] Theorem
⊢ Unit Reals r ⇔ r ≠ 0
[real_add_group] Theorem
⊢ AbelianGroup real_add_monoid
[real_add_monoid] Theorem
⊢ AbelianMonoid real_add_monoid
[real_add_monoid_simps] Theorem
⊢ real_add_monoid.carrier = 𝕌(:real) ∧ real_add_monoid.op = $+ ∧
real_add_monoid.id = 0
[real_mul_group] Theorem
⊢ AbelianGroup (real_mul_monoid excluding 0)
[real_mul_monoid] Theorem
⊢ AbelianMonoid real_mul_monoid
[real_mul_monoid_simps] Theorem
⊢ real_mul_monoid.carrier = 𝕌(:real) ∧ real_mul_monoid.op = $* ∧
real_mul_monoid.id = 1
[ring_divides_Reals] Theorem
⊢ ring_divides Reals p q ⇔ p = 0 ⇒ q = 0
[ring_prime_Reals] Theorem
⊢ ring_prime Reals p
*)
end
HOL 4, Trindemossen-2