| Source File | Identifier index | Theory binding index |
|---|
signature reduceTheory =
sig
type thm = Thm.thm
(* Theorems *)
val div_thm : thm
val mod_thm : thm
val num_case_compute_lazy : thm
(*
[arithmetic] Parent theory of "reduce"
[div_thm] Theorem
⊢ ∀x y q r. x DIV y = if x = q * y + r ∧ r < y then q else x DIV y
[mod_thm] Theorem
⊢ ∀x y q r. x MOD y = if x = q * y + r ∧ r < y then r else x MOD y
[num_case_compute_lazy] Theorem
⊢ num_CASE = (λn f g. if n = 0 then f else g (PRE n))
*)
end
| Source File | Identifier index | Theory binding index |
|---|